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ON FINITE GROUPS WITH 
A SYLOW p-SUBGROUP OF TYPE (m, n ) 

BY 

A R Y E  J U H A S Z  

ABSTRACT 

A finite p-group P is of type (m, n) if P has nilpotency class m - 1 ,  P / P ' ~  
Zp, • Zp. and all the lower central factors K, (P)/K~+~(P) are cyclic of order p". 
Our main result on finite groups with a Sylow p-subgroup of type (m, n) is 
(Theorem 4.1 ): Let G be a finite group with a Sylow p-subgroup P o f  type (m, n ), 
n =>2p _->3, m =>(n + 5 ) ( p -  1)+ 1. ForH<= G d e n o t e f I =  HOp.(G)/Op,(G). I f  
Op ( G ) is not cyclic and P'~ ~ 1, then P A G and G = P . T is a semidirect product 
o]' P and T, where f" is cyclic of  order t, t I P - 1. Here P~ is the subgroup defined in 
section O. This theorem easily yields that under its assumptions 
N~ (P) /OP(Nc (P))~- G / O  p (G), it gives information on the conjugacy pattern 
of p-elements  of G and gives information on the structure of p-local subgroups 
of G (Theorems 4.2, 4.3 and 4.4). 

Introduction 

This work consists of two parts: Part A (sections 0-3) contains the relevant 

results on p-groups of type (m, n), while Part B (section 4) contains the proof of 

the main theorems. In section 0 we collect the necessary elementary results on 

the structure of p-groups of type (re, n) .  Section 1 contains the collection 

formula for p-groups of type (m, n), which is basic for all the work. Let P be a 

p-group of type (m, n). Since, for 2 <= i <= m - 1, Ki (P) /K,+~(P)  is cyclic of order 

p", there are elements sl E K, (P) such that K, (P) = (K~+~(P), s,). In section 2 we 

compute the exact order of these s~ (Theorem 2.6), by introducing the concept of 

an "admissible word" and studying the set of all such words in P (Theorems 2.1 

and 2.2). 

In section 3 we derive some results on the power-structure of P and in 

particular we show that certain subgroups and homomorphic  images of P are 

regular in the sense of P. Hall (Theorem 3.4). This result is crucial in the proof of 

the main theorems. In order to achieve it we correspond to every p-group P of 
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type (m, n) a Lie-algebra which depends on the "fine structure" of P (Theorem 

3.2). This algebra differs in general from the usual one, but is similar in principle 

to that constructed by R. Shepherd in [12]. By this algebra we get some 

limitations on the p-degree of commutativity of P (Theorem 3.3), a concept 

which generalizes the notion of "degree of commutativity" introduced by N. 

Blackburn in [1], which lead by the aid of results of the previous sections to the 

desired result. 

The main result of section 4 is Theorem 4.1. Two difficulties arise in its proof: 

the location of Op(G) in a Sylow p-subgroup P of G and finding a maximal 

subgroup N of Or(G)  which is normal in G. Here G is a minimal counterexam- 

ple to Theorem 4.1. The location of Or(G)  is the subject of the first three 
propositions, which still deal with p-groups. In Proposition 4 we show that 

Cc (H) = Cp (P) for every noncyclic p-subgroup H of G, while in Proposition 5 

we show that the desired subgroup N exists, by Green's transfer theorem [6]. 

This finishes the proof of Theorem 4.1 immediately. Theorems 4.2, 4.3 and 4.4 

follow from Theorem 4.1 by standard considerations. 

PART A 

0. Notation and basic properties of finite p-groups of type (m, n) 

G is a finite group, P a Sylow p-subgroup of G (or just a p-group). A _-< G 
means that A is a subgroup of G. K2(P) = [ P , P ]  and for i=>3 K~(P)= 
[K,_1(P),P]. Define PI by PdP,  = Ce/e,(P2/P4) and for i -  > 2 let P~ = K~(P). 

Denote by Z, = Z, (P), 0 <= i (Zo = 1) the upper central series of P. For n = 1 a 
finite p-group of type (m, n) is a p-group of maximal class. The following results 
follow easily from this fact and the results of Blackburn [1] on p-groups of 
maximal class. 

PROPOSITION 1. Let P be a p-group of type (m, n ). Then 

(a) Z, = Pm_, for l <=i <=m - 2 ,  

(b) P/PI is cyclic of order p n. 

Let us denote by P~, 0 _-< j < n, the subgroup of P~ which contains P~§ and has 
index p~ in P~, P~+~ < P[--- P~. 

DEFISla'ION. Let k E N, k/ t t  = ko + r/n, r < n and let P be a p-group of type 

(m, n). P has degree of commutativity k /n  if [P~, P~ ] _-< P~§247 for every i, j => 1. If 
k > 0 then P has a positive degree of commutativity. 

From now on P denotes a p-group of type (m, n). 
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PROPOSITaON 2. Assume that P/P,,_, has positive degree of commutativity. 
Then : 

(a) There exists an element s ~ e \ P ,  such that s ~  Ce(Pm-JP~_~) and 
s ~ C,, (P~/P~). 

(b) If  P, = (P~, s,), s as in (a) and for 2 _--- i -< m - 1, si = [Si-l,  s ] ,  then 
P, = (Pi+l, Si). 

(c) For every s E P \P ,  .~(P) ,  Cv ( s )AP2= P,,_~. 

(d) For every s E P\P1.  (I)(P), s P = {s s I g ~ P} = s .  P2. 

(e) For every s ~ P \P ,  .(I)(P), s p" E P,._~. 

PROPOSITION 3. Assume that P/P,~_~ has degree of commutativity k/n, 0 <  
k<=n, m>=5. 

(a) I f  m is odd then P has degree of commutativity k/n. 

(b) If  m is even then P has degree o[ commutativity k /n  iff P~m-dP~ is abelian. 

(c) I[ Pz/P~-~ is abelian then P has degree of commutativity kin. 

LEMMA 1. Let s E P I P~" ~(P)  and H = (s, P~). Then 

(a) H is a p-group o[ type (m - 1, n). 

(b) Hi = Ki ( H ) =  P,+~, i => 1. 

THEOREM 1. Let P be a p-group of type (m, n). I f  m is odd and 5 _~ m <- 

2p + I then P has degree of commutativity k /n  >-_ 1/2. 

THEOREM 2. Let P be a p-group of type (m, n ). I[ m >- p + 2 then P has degree 
of commutativity > O. 

The result of Theorem 1 is best possible. 

LEMMA 2. Let P be a p-group of type (m, n ). I[ m <= p + 1 then exp(P /Pm-O = 
exp (,~ = p". 

Finally we need the following result on Au t (P ) ,  the group of automorphisms 
of P. 

THEOREM 3. [9] Let P be a p-group of type (m, n), m -> 4, A = Aut (P) ,  B a 

Sylow p-subgroup of A. Then 

(a) B/~  A and A is a splitting extension orb  by an abelian subgroup Q which is 

isomorphic to a subgroup of Zp-1 x Zp-1. 

(b) To every q E Q there exists an element s E P\P1 such that P = (s, Sl) and 

sT=-s~modP2, sq=samodP2 ,  a , b ~ o ( p ) ,  0 < a ,  b < p "  and a V - l - b  p-~= 
I mod  p. 

(c) For l <=i <=m-1,  s ~ s 7  .... bmodPi . l .  
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(d) I f  P'I # 1 then O is cyclic of order t, t I P - 1 and b = a" m o d  p" for some 
r E Z .  

COROLLARY. If G is a finite group with a Sylow p-subgroup of type (m, n ) and 

P'z # 1 then NG ( P ) / P .  C~ (P) is cyclic of  order t, t [ p  - 1. 

Finally, in Section z recall T h e o r e m  x of Section y by T h e o r e m  y.  x if y # z 

and by T h e o r e m  x if y = z. 

1. T h e  co l lec t ion  f o r m u l a  for  p - g r o u p s  of  type  (m,  n )  

By the collection fo rmula  [8] if F is the f ree  g roup  gene ra t ed  by x and y and 
n E Z then ~- 

( x ' y ) P " = x P " . y " " . c 2  . . . c  t . . . cp , ,  

where  c~ E K~((x,y)),  c, =-[y,x,x, . . . ,x]",r z l , . . . , z i_ t]  m o d  Ki+,((x,y)),  z, E 
{x, y} ,  

i - 1  
7r[y, z , , - - . ,  z,_,] # [y, x, x , "  ", x] m o d  K,+l((x, y)). 

i - 1  

For  n = 1, ap = ap, = 1 m o d p  ([8]). O u r  aim is to genera l ize  this result  for  

n => 2. For  this pu rpose  we fine a finite g roup  P s.t. P is a h o m o m o r p h i c  image  of 

F and the result  is t rue in P. It turns out  that  a metabe l ian  p - g r o u p  of type (m, n)  

is sui table for  this aim. H e n c e  we shall construct  such a group.  

PROPOSITION 0. [11] Let  P be a metabelian p-group of type (m, n), P = (s, st) 
and for i > 2, s~ = [S~-l, s]. Then 

t'tl !'/ rI ('/('/ (1)  ' ' : ' 0st,(  0 s ]  [st ,  s ] = s  s " " s j + l "  - ~ ~' 
v=2 V.=I 

where [sz, (v - 1)st, (/z - 1)s] = [s2, s , , . - . ,  sl, s , . . . ,  s]. 
v - 1  /~=1 

(2) 

0 )  

PROPOSITION 1. 

(4) For i >-2 

Pn--1 ~( P~ )__ 
H t + l  oi+t -- 1 
t = O  

i , l t " ' s  k = 2 .  [ s k ,  s ] = s k + t ' "  �9 & + ,  " , > 

(')' 
�9 

v~l 

Let P be a metabelian p-group of type (m, n). Then 

p~ 
'+' Z ( P ) .  K2(P,). and I-I or+, ,_ 

f~O 
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If P is embedded in a p-group of type (m + 1, n) then 

(4') I-I t++l K2(P1). 
t=O 

PROOF. Let Hi = (s,P~). Then by Lemma 0.1, Hi is a p-group of type 

(m - i + 1, n). Since for i > 2, P~ is abelian, 

;:) 
�9 �9 �9 ~ i + p n l  �9 

By 0.2(e), s p", (ss~) p" E Z ( P )  and by 0.2(d) for H,, (ss~) pn and s p~ are conjugate in 

P. But two elements in the center are conjugate iff they are equal. Hence 

(ss,) p-= s p~. This proves the first part of (4) and (4'). Similarly, expanding 

(SSl) p- mod K2(P1) we obtain the second part of (4). 

PROPOSITION 2. Let P be a metabelian p-group of type (m, n) and let x ~ P~, 

i >= 2. Then 
ap . a a 1 (a) For every integer k, x kp"= s,+e_l . - s , ;p  2+t"" sZ-l ,  where for every j, 

p_~j  <=m - 1 ,  O<=a, < p  n and pn- ' la j  for pr <-j < p  '§ l <=r<=n-1. 

(b) Let x = s~ 1. . .  s~;, . . .  S~m% ', 0<= a, <p".  If X has another representation 
X S~i I ~t ~ --1 . . . .  s . . . .  1"'" s ;,%, where i l l , '"  ", fl,~-i are integers such that p"-r I fl, for 

p~ <=j <p'§ O<=r<=n-1, then p " - ' l a j  for p<- j  < p  "§ O < = r < n - 1 .  

PROOF. We may assume that m _-> p + 2, in view of Lemma 0.2. Say that the 

depth l (x)  of x (in (b)) is /z if c~ ,#0  but a~_, = 0  for every t > 0 .  We prove 

Proposition 2 by induction on l(x). By Lemma 0.2 the proposition holds for 
ot ~t 1 

l ( x )<=p-1 .  Let y = s~O~...s,7~ '. Then x = s, y and as P2 is abelian, x kp" 
s T'kP"y kp". By (4) 

s : , k p  ~ - ~  - a , k ( P t  ~)  - a , k ( m P " _ l  ) 

S i +  1 " �9 �9 S i + t _  1 " . �9 S m _  1 

So we compute s~+,-l\ ' / Let 

- a~k = k,p ~ + r,, where 0 -< r, < p". 

Then p " - ' l r ,  f o r p ' _ - < t < p ' + ~ , 0 - < c _ - < n - 1 ,  and 

- c q k  ktp~ �9 
S l + t - 1  = S l + t - I  " S i t + t - 1  �9 

By the induction hypothesis (a) 

krpn a(t, 1)  a(t,t~ ) 
S i + t _  1 = S i + t + p _  2 �9 . . S l + r + p _ 3 + l x  " �9 �9 

where O<=a(t, l z ) < p  ~ and p"-r la( t ,  lz ) for p ' - p +  l<-_lx < p ' + l - p +  l, 1 _  -< 

r = < n. Therefore 
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( * )  S . . . .  IX t / ~ .  S i + t - 1  " S . . . .  p - 2 "  i + t + p - S + t t "  " ",  

where  O<=r,, a ( t , / x ) < p "  and p " - ' l a ( t , # )  for  p ' - p + l < = / z < p ' + ~ - p + l ,  

l <=r<=n a n d p " - ' l r  , for p" <=t < p  "+~, l <=c <=n-1.  
kalpn A 1 A 

. . . .  s ~ . .  where  Aq = This  yields, by (4), that  s, si+p_l i+p-2+q ", 

X,+,=q a(t, tz) + r~-2+q. But  then by (*) p ' - '  [ Aq for  p '  - p + 1 < q < p ,+1 _ p + 1. 
k,,,: B, % where  p"-" I Bq for  Hence ,  as l ( s~" ' : )<l (x ) ,  s, =s,§247247 

p '  - p + 1 =< q < p'§ - p + 1 and 0 =< Bq < p ' ,  by the induct ion hypothes is  (b). 
kp" C I C h I Also, y =S~+p-2" ' 'S~§  where  0 = < c h < p *  and p ' - '  Ch for  

kp n 
p ' - p  + l = < h  < p ' + l ,  by the induction hypothes is  (b). H e n c e  x 

n, a + c  , p , _ ,  
s,+p_~..'s,+p-2:q"', where  for  p ' - p + l < = q < p ' + ~ - p + l  

(Co = 0) and par t  (a) follows f rom this by the induction hypothes is  (b). 

W e  p rove  (b). Let /3 j  = kip ~ + hi, where  0 =< hi < p ~ and p ~-'  I hj for  p" =< j < 
p,+l, 0 < r < n  1. Then x = ( s  k, k _,p. h _, = = - , " ' s , . - ~ )  - " s , , _ ~ .  By par t  (a) 

k i n _  1 p n  = Up , u . 
. . . .  s , . _ , )  

where  p " - ' l u j  for  p ' = < j < p ' + l ,  l = < r = < n - 1  and 0 _ - < u j < p ' .  H e n c e  x =  
h, Sh~_, si " ' "  i p-2"z, where  

Z = 

m--i+p 

f l  up+ +hp+ t 
S i+p-l+t �9 

t=O 

, Fl,=o s,+p_~+,, where  Vp§ < and p"-" I vi f o r  pr  < Since l ( z ) <  l(x), * = m-,+p v+, 0____< p ,  = 

j < p,+l, by the hypothes is  (b) of  the proposi t ion.  Consequen t ly  x has the desi red 

representa t ion .  

T h e  p roof  of the following l e m m a  is e l emen ta ry  and s t ra ightforward,  hence  we 

omit  it. 

LEMMA 1. Let  m, n ~, 8 ~ Z, m _--> 3, n --> 2, 0 _--< a,  8 --< p "  - 1. Then there 

exists a unique p-group P of type (m, n) with P~ = 1, s.t. P = (s, s~), for every i, 

2 < i < m =  = - 1 ,  s , = [ s , _ l , s ] , ( s s , ) P ' = s , , _ ~ a n d s  p n = ~  Sr,-~.8 

W e  come now to the main  result  of this section: 

THEOREM 1. 

c!:) r) (,) ( x y y ' "  = x : y ' "  2 . . .  ' . . . c : ,  

c, E K~ (F) : = K, by the collection 

[y, (i - 1)x ]~,~r [y, z,,  �9 �9 z,_~] m o d  K,+,, 

[y, z~ , - - . ,  z,-1] # [y, (i - 1)x ] m o d  K,+I, 

Let F be the free group generated by x and y and let 

formula, ci =-- 

z, yL 
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T h e n  ap, (fT) - (~7) + r .  p n-t+, mod  p n, f o r  s o m e  in teger  r. 

PROOF. By L e m m a  1, to every i, 1 =< i =< n there  exists a p - g r o u p  P of type 

(p '  + 1, n)  with abel ian P~ such that  

s(:t ( s s , )  pn = s ' n s ~  ~ ~ . . . s ~ .  

Let  1 --~ N ---> F --~ P --> 1 be  a presenta t ion  of P, x"  = s, y" = s~. Obvious ly  we 

have  

( :~r  ( [ y ,  ( /  - -  X ) X ]  ' )  = [ S l ,  (i - 1)s]", = sT'. 

Hence  there exist e l ements  d~ = cTE P~, d~ = sT ,u ,  u~ E P~§ s.t. 

( s s , )  p~ = s p~ " s ~ ' '  d 2 . . . dp. .  

On the o ther  hand  

(SSl)" s "  S~l'S 
H e n c e  (p-) ! ~ )  

s2 . . . .  s,. = d �9 �9 �9 

Since P is a p - g r o u p  of type (p '  + 1, n)  

By Proposi t ion 2(a) 

S f ~ S t ' '  " " S t + ~ .  " " S p %  

S p '  " ~  " " " - - p '  . 

!',~ h 
d = s , "  �9 �9 s,~.+~ ~ *' �9 " " S p ' ~  

where  0 <= tz <= p '  - t, p . . . .  11 e, and Pn-~+l I e, for  2 = t -< p~ - 1. H e n c e  

d 2 , a z aj e 2 1 b 2 b I 
�9 "" $ 2  " ' ' S  t "" " S p , ,  S " ' "  ' -  = S 2  "" " S j  " ' ' S p ~ ,  

where  O<-aj ,  b , < p "  for  2 = < j < p ~ - l ,  e - Y e , = - O m o d p  "-~+~ and e =  

Y e, - - 0  m o d p  "-'§ (see Proposi t ion  2 )  There fo re ,  considering the exponen t s  of 

sp, in the lef t -hand side and the r ight -hand side of  (*)(*)(*), we find that  

e + - + m o d p ~ .  p l  e ap, p l  

Consequent ly ,  

pn pn 
for  some  integer  r, 

as required.  
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COROLLARY 1. %, ~ 1 m o d  p. 

COROLLARY 2. In  the  e x p a n s i o n  o f  (xy)  kp~ ( k , p ) =  1 by the  co l l ec t ion  

f o r m u l a  ap, =- k mod p. 

These  corol lar ies  follows by the facts: 

p " - ' l l ( P ~ )  and ( k p p " ) = = - k p " - ' m o d p " .  

2. The  o rder  of s~ 

In this section we assume that  P is a p - g r o u p  of type (m, n)  and nota t ions  are 

as in the previous  sections. 

'~ '~'+'. '~ - '  0_-< < " Let  x = s~ ' . s ,+ l  ".s , ,7:~,  c t , = p  . We say that  x is an a d m i s s i b l e  w o r d  

(a.w.) if, for  every  i, p~  =< i _-<p~ 1, p"-'~ l a~. We  say that  the depth  l ( x )  of x 

is i if a ~  0 but  for every t > 0 ,  a,_, = 0. 

D e n o t e  by A the set of all the admissible  words  of P. 

THEOREM l. L e t  x = s ,  s2 2. �9 �9 s,S-l '  a n d  y = s~ �9 �9 �9 sin'_,, 0<= a,, 13, <=p", be 

t w o  a d m i s s i b l e  words .  T h e n  

(a) x . y E A .  

(b) F o r  every  u E P, [x, u] ~ A. 

(c) I f z = s ~ " " s , , _ ~ , ' ~ - '  p'~<i<p"+'thenzJEAforr>n= = - a , ( a , p ) = l .  

(In o the r  words  A is a normal  - -  in fact characteris t ic  - -  subgroup  of P which 

contains  ~ , ( P , )  for  i arid r as in (c).) 

PROOF. Let  l ( x )  = i, l (y )  = j. Suppose  that  we have  p roved  the t h e o r e m  for  

a.w.s x and y with j_--- i. If  u and v are a.w.s, l ( u ) =  i, l ( v )  = j, and j < i then 

u �9 v is an a.w.: u �9 o = v �9 u .[u,  v]. Now,  by (a) v .  u is an a.w. and by (b) [u, v] 

is an a.w. and l ( [u ,  v ] ) >  i. H e n c e  by (a) u v  = v �9 u [ u ,  v] ~ A. There fo re ,  wi thout  

loss of general i ty,  we may  assume that  l ( y ) =  > l ( x ) .  

Assume  that  the t h e o r e m  is t rue for  a.w.s with depth  i + 1 and p rove  it is t rue 

for  i. First we p rove  (a). suppose  y = s~, j _-> i (y ~ A). 

CLAIM. X �9 S ~' ~ A. 

b ~ 1211+ 1 Otto_ 1 b t~ Ot - i - j  b ot ~tm_ I 
PROOF. X "Sj = S~'S~+~ "" " S,,,_~ " S s = S~"" " S,,S-I_s" S s " S,,S--/" " " S,,,-1. We may  as- 

~ - -  ~ o b o ~ . - , - , t ~ - - , - ,  o h  Since i < m  - l - j ,  it sume  m - 1 - j  > j  >= i. s , . - / : ~ ' s i  = o i o , , - s _ i t o m _ j _ ~ , , j j .  

follows f rom the induction hypothes is  (b) that  '~'- '- '  [sm-~-s,s~ E A and hence  
~ - !  - 1 a~m - I  - 1 

s~_s_~[s~_s_~,b  ~ E A, by (a). By a similar appl icat ion of the ident i ty srr/ 

r/so[so, r/] m - 2 j -  1 t imes, we obtain  
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b ~ ~ a j+b  bl+ 1 b -1 
XSj = Si'Si~-+l ' �9 " " Sj  " �9 " Sj+~ " " " S,,751 

ot +b bj+ 1 bin_ 1 
and t h e s u b w o r d  s i '  . s j + ~ . . . S m _ l  is an a.w. But  then x . s ,  b i s a n  a.w. b y i t s  

definition. This proves  our  Claim. 

Let  j > i  and let y s~' ~ ' = = . . .  s , ,%. Then  

x . y  ( s ? .  s ~ ' ; ' ) ( s ~ ,  ' ~ '  . . . . . .  s m~_-~ ) 

~ _ +,,+13, .s + , .s , 
= ( S : ' "  SI/--I 1 ~ j  S / + I  �9 . �9 s ~ : : , )  sT: , '  ' ~ - '  . . . . . . .  S,,,"-i 

,~ , , ~ _ % ~ j + t 3 j  8~+t. " 8 ~ 
and by our  Claim the word s + " " ~  si+~ . s , . _ ~  is admissible. Hence ,  

Otm-- �9 
again by our  Claim, ( s T " "  s , , _ ~ )  s ~ ' .  sT++~ ' is an a.w. If we apply the last Claim 

m -  1 - j  t imes we obtain that x - y  is an a.w. To  prove  (b) we deno te  
(XI+ t o~m_ I = 

x++, = s++, �9 �9 �9 s , ._~ for  t > 1. Then  to every  u E P, 

I x ,  U ]  ~--- [STt:~ ~ ]  X'+l [ S i + I  ,~t'+l 

N o w ,  for  t _-> 1, [s,+,, u] is an a.w. 

x 1 
[Si+t ,  U ]  . . . .  

u l , + 2 .  . . [ sO:: , ,  , l X ,  . . . .  . . . [S~m%2, U ] .  

by the induction hyp(b) .  Hence  

= ( s , + , . . l t s , + , , . , x , + , + ~ ]  

is an a.w. by (a) and (b). There fore ,  by (a) 

m--I  

(*) 1-I ~ u l  x' . . . .  [si+,, is an a.w. 
t = l  

and it remains only to show that [s~", u] x'+' is an a.w. For  this it suffices to show 

that [s•', u] is an a.w. We  may assume i < p "  and p " - "  ]ai .  By the collection 

formula  

~ 2) [s~", u] = sV'(s '~+)" = s~-'(s?)"'= ( s V ' s ' ~ ) " "  2 . . .  k,, = [s,, u ] "  2 . . .  k,., 

where  k, ~ K, ((s+, [s,, u]))  _-< P(,+l)+,o-, = P~o, jo = i . j  + 1. We prove  that k J and 

[s,, u]" ,  are a.w. by using (c). To  apply (c) to k J we have to show that if 

(7) : = p q b  (b, p )  = 1 and p* = jo < p e + l  

then q => n -  e. If ] = p h d ,  ( d , p ) =  1, then i " p h d  = ij  <jo .  Hence ,  if p "  =< i < 

p ,+l  then p"+hl<=jo<p'~+h+l and we have to show q => n -  (a  + h).  Let  a, = 
> < a . p ' ,  ( a , p ) =  1. Then  q = r -  h. But  n - a  = r, by the definition 9f an_//a.w., 

hence n - a - h < = r - h < = q  and we may apply (c). T he re fo r e  II7. '~2k~/] is 

admissible by (a) and (c). We  show that [si, u] ~' is admissible. Since [si, u] E P,+I, 

obviously [&, u] a, is an a.w., by applying (c) to z = [s~, u] with l ( z )  <= m - i - 1. 

This shows that [sT ,  u ]  is an a.w. and by (a) and (*) [x, u] is. 
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"t. 
Finally we p rove  (c). Le t  z si 'u,  u = s~'.~' . . .  7._, = sm-x. I f b = a  p ' , ( a , p ) = l ,  

then by the collection fo rmula  

z b  7. b 2 j = ( s , ' u )  = o ,  ~ ~'bt',,2 " " k  " " k s  

kj E Kj((s~", u))  <- _ P,o-I~+,+~ = Pjo,/o = ij + 1. Just  as in the p roof  of (b) we find 

that  k i is admissible.  Since u E G~+~, u b is admissible  by (c) and  since 

r =~ n - a ,  (s~")" is admissible.  H e n c e  z b is an a.w. by (a). Q .E .D .  

a I a m _  | REMARK. Let  x = S l . . . s , _ , .  W e  say that  x is admissible  of rank r, if 
a I a m _  1 p . . . . . .  ~ [ a, for  p "  _-< i < p"+~ and we say that  x = sj �9 �9 �9 sin_, is admissible  of  

rank r with respect  to j if x is admissible  of  rank  r in the subg roup  ~ = (Gi, s). 

By using the same  a rgumen t s  as in the p roof  of the prev ious  t h e o r e m  we may  

prove:  

a l  t~t2 ~tm--I ~l ~ 2  t~ --I THEOREM 2. Let X = S 1 S 2 " " " S rn - 1 ,  y = S 1 S 2 " " " S ram-- 1 ,  0 ~ Oli, [ ~ i .  

(a) I f  x is admissible o f  rank r and  y is admissible o f  rank r w.r. to j, j >= 2, then 
E 1 era_ 1 

xy  is admissible  o f  rank r and xy  = s~ . .  �9 s~_~, e, - ai m o d p  . . . . .  for  p~ < i < 
p a + l .  

(b) I f  x is admissible o f  rank r then for  every u, [x, u] is admissible  o f  rank r w.r. 

t o 2 .  

(c) I f  x is admissible o f  rank r then x ~" is admissible o f  rank r + a and  i f  

x p~ s~' ~ - '  m o d p  . . . . . . .  _-< p~+~ . . . .  s ;.% then [3, - p ~ a, for  p ~ i <  . 

(d) I f  x and  y are admissible o f  rank r then x �9 y is. 

(e) I f  x is admissible o f  rank r then to every u E P, [x, u]  is. 

~ ~ -' <= i (f) I f  z = s~'. . . s,7-~ and p~ <p*§ and  t >= n - et + r - 1  then z "~'' is 

admissible  o f  rank r, ( a , p ) =  1. 

T h e  next  t h e o r e m  shows that  a fo rmula  ana logous  to (4) holds for  a 

nonme tabe l i an  p - g r o u p  of type (m, n).  

THEOREM 3. Le t  P be a p-group o f  t y p e  (m, n )  and let k be a natural  number,  

( k , p )  = 1. Then there exist  natural  numbers  ej  such that  

and  for  i >- 2 

The  e~' s sat is fy:  

(,) 

k p "  e~ le l 

S l  " S 2  " S 3  " " " S p n  " U 1 = 1, 

t ~ i  a k p  n 
~2 

�9 . S ~ + p n _  1 Ui~  Si " Si+z " 

p ' - * l e ~ f o r p * < - j < p * + ~  and  

u, er+, -z (p)  

,U~ E Pp.+~. 

p"-~Ue~forj=p~. 



Voi. 36, 1980 GROUPS OF TYPE (m, n) 143 

I f  P is e m b e d d e d  in a p - g r o u p  o f  type (m  + 1, n )  then for  i = 1, u,  E Pp~+,. 

PROOF. It follows from the collection formula and 0.2(e) that 

s~ , ' c  2 " ' c  ' " " G , ~ ' z = I ,  c, E P , ,  z E Z ( P ) .  

By T h e o r e m l  c i are admissible words, h e n c e s l  . c ~ 2 / . . . c  ~ , , / . . .  ~ 

is. Therefore there exist numbers ej, 0 =< ej =< p ~ s.t. 

RPn 2 pn kp n e 2 e n 
. . . .  n S l  C = S l  " S 2  " " " S ~ n U O ,  

Uo E Pp.+~ and for p~ < j < p~+l, p.-~ l ej. It remains to show that p~-" {I ej for 

] = p". The exponent of sp. in cpo is 

k~ -- + rp . . . .  1 mod p", 

y/ 
by Theorem 1.1. We prove that the contribution of Ilf2~ ~ i to the exponent of 

a, r - 1 spo is divisible by p . . . .  1. Let c~ = s~'. �9 �9 s,,-1. Denote 

Then, by the collection f o r m u l a , ( , ) ,  s "r s %- ' '  d 2 ! ) ;  

c , =  , �9 �9 ,,-1 �9 2 . . . d . . . d r ,  d, E P,.,+I. 

If p ~ < = t < p  ~247 then p " + ~  Hence as pn-("+~ ), d '  EA(P2) by 

Theorem l(c) and l id  , E A(P2) by Theorem l(a). Therefore 
~-i pn pn 

c,(k~') - s ,  ( ' ) ' "  "s: ' - -~( '  )mod A(P2). 

a l  ~ S 1 ~1 " " ~ -1 . . . . . .  sm%~ are elements of A(P1) then as [s~", s7 j] E Now, i fx  S l s=_~,y 
A(P2) by Theorem 2(b), 

x �9 y --= s~ ''+~ . . . .  s~%q '+~--' mod A(P2). 
Hence 

I'~ikPi n ) 6 z 8 _ 1  n - - . + l  ___<j 
p~-- I  

]-I c - - s ~ - . . s 2 = ~ m o d A ( P d ,  p [Sj, i 
i = 2  

and by Theorem 2(a) 

P~ P~ e 

1-I ~i = ~ 2  " " " S p .  mod P p - + l ,  
n - - ~ + l  

where ep. = k. mod p 

i satisfy the required conditions. If P is embedded in a p-group of Hence the e~ 
type (m + 1, n) then by Proposition 0.2 ( s s l )  kp-  = s kp- .  Hence the results follow 
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by the case i = I and by Lemma 0.1 considering the subgroups H, = (P,, s), i => 2. 

The following two theorems refine Theorem 3. Theorem 5 gives a formula for 
p n - - l + t  

$ i  

THEOREM 4. Let  P be a p-group of  type (m, n ). Then ]:or every k, (k, p )  = 1, 

m - - p - - I  
k p  n 

$J ~ H 
b ~ + l  

se+ . mod Z ( P ) .  P,+p. 

> o r i ] : P i s e m b e d d e d i n a p - g r o u p o f t y p e  (m + l , n ) P o t h e n f o r i  >- 1, and [or i = 2, 

ra - -p - - i  
k p  ~ 

Si ~ H 
p . = 0  

b~ § s,+p_l+~modPi+p.. 

The be 's  satis[y 

(,)(,) 
~_~1 b 

p -  llb  

[or p ~ - ~ - p  <=tz < p~ - p  - 1, 

for l~ = p~ - p. 

~" "5 "3 %" p" 2 =  = p - l ,  PROOF. By Theorem 3, s~ = s2 s3 �9 �9 �9 sp .u  where I e, for i < 
the e i's satisfy (*) for ] => p, and u E Pp.+~ if P is embedded in Po, u E P~.+IZ(P) if 

P is not embedded in Po. Hence, by Theorem l(c) 

k p  n ep e n 

s, = sp . . . s~.u modA(P2) 
k p  n e e n 

and by Theorem 2(a) s~ = s T . . . s f . u ,  where e , - -e ,  mod p . . . .  ~ for p ~ < = i <  

p~§ This proves the theorem for i = 1. For i => 2 we consider the subgroups 

H, = (P,, s) and apply Lemma 0.1 to the result for i = 1. 

THEOREM 5. Let  P be a p-group o f  type (m, n). Then 

(1) To every k with (k, p ) =  1 and to every t >= 1, 

k P n - - l + t  a o  1 a n 
$ I = $ l + t ~ - - ] )  " " $ ~- t0 , - - l )+ ~, " P -P  " �9 " " S l + t ( p - - l ) + p n - - p  U l ~  

where ul E Pl+,o,-l)+p.-~+l" Z ( P ) .  

(2) I[ P is embedded  in a p-group Po o[ type (m + 1, n )  then for every i >= 1 and  

every t = > 1 

k p n - - l + t  a o a �9 a p n _ p  �9 

S i  = $ i + t ( p - 1 ) "  " " $ i + t ( p - 1 ) + / ~ "  " si+,~,-l)+p~-p ui where Ui ~- ei+t(p-l)+p.-p+l. 

The aj's in (1) and (2) satisfy 

pn- lax f o r p a _ p = < / z  <p.+l_p, 

p"-~lla~, for /z  = p ~ - p .  
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ap apn 
PROOF. CLAIM 1. L e t  x = sp �9 �9 �9 sp.  v, v E Pp.+~, be an admiss ib le  word, i.e. 

x E A(Pz). T h e n  x p E A(Pp) .  

PROOF. Induction on l ( x  ). x = s~u, u E Pp+,, P " - '  I a (a  = ap ) and u E A(P,). 
By the collection formula 

x p = (s~ p = s~PuPc " " c p ,  c, E g~((s~,  u)) .  

Now, s~ A(P~) by definition and u p E A(Pp) by hypothesis. We show that 

c '  e h(Pp). 

u E A ( P 1 ) ~  c, EA(P1) NPp+~ by Theorem l(b). Hence, for 2-<t_-<p-1,  (,) 
c " E A(Pp). Finally c, E Pp by Theorem 2(b). Therefore by Theorem l(a) 
x p E A(Pp). 

By Theorem 1 [s,, u] E A(P1) and 
induction hypothesis 

CLAIM 2. If x, u E A(P~) then [x, u] ~ A(Pp+,). 

PROOF. Induction on l ( x ) .  Let x = s?v, p l a, v E Pi+,. [x, u] = [sT" v, u] = 

[s?, u ] .  [sT.  u, v ] [v ,  u]. By the induction hypothesis [v, u] E A(Pp+,) and if we 
show that [sT, u] E A(Pp+,) then [x, u] E A(Pp+,), by Theorem 1. By the collection 
formula 

[sT, u l = [ s , , u ] ~ c  " " c a ,  c, E K , ( ( s , , u l ,  u))<-P,(,+,)+1. 

by assumption u E A(P1). Hence by the 

!') 
t 

C • A(Pp+l) 

and by Theorem 1 

for t => 2 

I-I c '  e 
t 

Since [s, u] E A(P2) by Theorem 2(b), [s,, u] ~ E A(Pe+, ) by Claim 1 and [x, u] E 
A(Pp+I) by Theorem 1. 

We prove Theorem 5 by induction on t. As we have seen in the proofs of the 
previous theorems, we may assume i =  1 and P is embedded in P0. By 
assumption 

k p n - l + t + l  
S l ( s  ~p . . . . .  )P ao : : ( S  l + t ( p - - l )  " aPn-P P �9 " S l+ t (p - -1 )+pn-pUl )  . 

By the collection formula 
/ . \  

a 0 a n aoP p / l  r] 
( S  l + t ( p _ 1 )  . SI+t(p--1)+pn--P U l ) P  papn_p �9 " P - P  " ~ S l + t ( p - - 1 )  " " " S l + t ( p - l ) + p n - p  " U 1 . . . .  C 2 "  Cp~ 

a 0 c, e K,  �9 u , ) ) .  �9 " S l + t ( p - l ) + p n - l ~  
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H e n c e  by the last Claim 

kp  n - I + l + l  aoP p "apn .p  p 
S l ~ S l+ t (p - - I )  " " " S l + t ( p - - l ) + p n - - p U l  m o d  A(P2+(t+I)~,-I)). 

at~ Since for  tx >-1, ul, s~§ A(P2§ by Cla im 1, 

P P% A(e2+(,+lXp-,)) .  u b s l+t(p-l)+g E 

kp  n - l + t + l  aoP 
H e n c e  s,  -s,§ B y  assumpt ion  p~ H e n c e  

p n [aop and by T h e o r e m  4 

kp  n - I+ t+l  b 0 , �9 . S bl~ 
S 1 ~ -  S l + ( t + l ) ( p + l )  s+( t+ l ) (p- - , )+ /~  

bpn - p  
�9 �9 �9 s ~+(,+~xp-,)+p"-p m o d  A(P2+(,+,xp-,)) �9 P2+(t+,)(p-,)+p.-p, 

where  the b , ' s  satisfy (*) (*). T h e r e f o r e  our  t h e o r e m  follows f rom T h e o r e m  2(a). 

T h e  following t heo rem is the main result  of this section. 

THEOREM 6. Let  P be a p -goup  of  type (m, n)  and let m = C o -  1)q + r, 

O < r <- p - 2. For every i, l <- i < m - 1 ,  let i = q, co - 1 )  + r,  O <= r~ <- p - 2 and 

de]ine 8 ( i ) = 1  i f  r , < r ,  8 ( i ) = 0  i[ r , > r .  Denote  I~CO')=e. Then lpls~l = 

q - q~ + n - 1 + 8( i )  [or i > 1 i f P  is embedded  in a p-group Po of  type (m + 1, n)  

and for i >- 2 if  P is not embedded  in Po. 

PROOF. By induction on cI (P) .  If c l (P )=<p  - 1 then Is~ I -- pn by L e m m a  0.2�9 

For  i < p - 1  q = q , = 0 ,  8 ( i ) = 1  and for  i = p - 1 ,  q = q , = l  and 8 ( i ) = 0 ,  

hence  in any case the t h e o r e m  is true. A s s u m e  we have  p roved  the t h e o r e m  for  

groups  of type (m - 1, n). W e  prove  it for  groups  of type (m, n). A s s u m e  first 

r=>2. Then  l + q c o - 1 ) = l + m - r < = m - 1  and l + q c o - 1 ) > = m - p + 3 .  

T h e r e f o r e  Pm-~ <= P~+q(p-, <- Pm-p+z. By T h e o r e m  5 

p n - 1 +q bo br - 2  
S ,  = S l + q ( p - , )  " " " S r - l + q ( p - , ) ~  

p n - l + q  

P"-'l[bo, P " - ' l b '  for  i -  > 1. Hence ,  by L e m m a  0.2 s,  is of o rder  p and 

Isll = P"§ By the nota t ions  of  the t h e o r e m  r, = 1, 8(1) = 1, q~ = 0 and n + q = 

q - q, + n - 1 + 8(1), as required.  

If r =< 1 then by T h e o r e m  5: 

P"-~+'-' b~ b~-2 for  r = 1, S l  = S , + ( q - , ) ( p - l )  " " " S o ( p - , )  

p n - l + q - I  b0 ~p~3 
S l  ~--" S , + ( q - l ) ( p - , ) "  " " S q ( p - , ) - I  f o r  r = 0 .  

Since p " - '  II bo and p " - ' J  b i for  j _-> 1, Is, I = P"-~+q, by L e m m a  0.2. 

Now,  r , = l ,  r_->l, 8 ( 1 ) = 0  and q , = 0 .  H e n c e  q - q , + 8 ( 1 ) + n - l =  

q + n - 1. This  p roves  the t h e o r e m  for  i = 1. Def ine  Hi = (P~, s) for  i _-> 2. Hi is a 
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p - g r o u p  of  t y p e  ( m ' , n ) ,  m ' =  m - i + 1. L e t  m ' =  q ' ( p -  1 ) +  r ' ,  0 =  < r ' < = p - 2 .  

T h e n  m ' =  m + i + 1 = q ( p  - 1 ) +  r - q, Co - 1 ) -  rl + 1 = (q - q,)Co - 1 ) +  (r  - ri) 

+ l .  H e n c e i f 0 = < r - r ~ + l = < p - 2 t h e n  r ' = r - r , + l , q ' = q - q ~ . S u p p o s e  0-< 

r - r ~ + l = < p - 2 .  T h e n  by  i n d u c t i o n  I p ( I s i l ) = n - l + q - q ' + 8 ' ( i ) ,  w h e r e  

8 ' ( 0  = 1 fo r  r '  > 1 a n d  8 ' ( i )  = 0 fo r  r ' =  < 1, i .e. 8 ' ( 0  = 1 fo r  r~ < r a n d  8 ' ( i )  = 0 fo r  

ri = r. T h e r e f o r e  8 ' ( i )  = 8 ( 0  a n d  lp(Is, [) = n - 1 + q - q, + 8 ( 0 .  If  r - r~ + 1 => 

p - 1 t hen  r - r, + 1 = p - 1 a n d  this  is p o s s i b l e  on ly  if r = p - 2, r, = 0, r '  = 0 a n d  

m '  = ( q '  + 1) (p - 1). B y  i n d u c t i o n  lp (I s, I) = n - 1 + q - q '  + 1 + 8'(i) .  W e  s h o w  

tha t  1 + 8 ' ( 0  = 8(i) .  S i n c e  r '  = 0, 3 ' ( i )  = 0, a n d  as r, = 0 a n d  r = p - 2, 8 ( 0  = 1. 

H e n c e  1 + 3 ' ( 0  = 3 ( 0 .  F i n a l l y ,  a s s u m e  r - r~ + 1 < 0. T h e n  r '  = 

(p - 1) + ( r  - r~ + 1), m '  = ( q ' -  1) (p  - 1) + r '  a n d  by  the  i n d u c t i o n  h y p o t h e s i s  

lp(Is, I)= n - l + q - q , - l + 3 ' ( i ) ,  w h e r e  3 ' ( i ) =  1 fo r  r ' > l  a n d  3 ' ( i ) = 0  fo r  

r ' -<  1. W e  s h o w  tha t  3 ' ( 0 -  1 = 3 ( i ) .  3 ' ( 0  = 1 r r ' >  1 r p -  1 + ( r -  r~)+ 1 > 

1 r r -  r~ + p -  1 > 0  r162 r -  r, + 1 + ( p - 2 ) > 0 .  S i n c e  0 =  < r, r, _ - < p - 2 , - p  +2_--- 

r - r ,<=O and - p +  3<=r-r~ + l. H e n c e  r - r ~  + l + p - 2  > l > 0 a n d 3 ' ( i ) = l .  

N o w ,  3 ( 0 =  1 fo r  r~ < r a n d  3 ( i ) =  0 fo r  r~ => r. S ince  r -  r~ + 1 < 0 ,  3 ( i ) =  0 a n d  

3( i )  = 3 ' ( i ) -  1. Th i s  p r o v e s  T h e o r e m  6. 

T h e  f o l l o w i n g  t h e o r e m ,  which  e s s e n t i a l l y  is a c o n s e q u e n c e  of  T h e o r e m  5, has  a 

d i f f e r e n t  n a t u r e  t han  the  p r e v i o u s  ones .  I t  shows  tha t  fo r  l a r g e  i, 131 (P1) a n d  the  

s u b g r o u p s  of  a d m i s s i b l e  w o r d s  of  h igh  r a n k  c o i n c i d e  a n d  t hey  a r e  r egu la r .  

THEOREM 7. Let  P be a p-group of  type (m, n), e x p ( P l ) =  pe, e >----" n. Let  

m = ( p - 1 ) q + r ,  O < = r < = p - 2  and 3(1)  as in Theorem 6. Denote  u =  

m - p ( p - 1 ) + 3 ( 1 ) ( p - 1 ) - r  if e - p - n + l > - O  and let u = p - 1  if 

e - p - n + 1 < O. Also  denote K = U, -p  (PO ire - p - n + 1 >= 0 and K = U~ (P,) 

if e - p - n + 1 < O. Finally, for t <= 0 define 

no+, ={x ~ P.+, Ix = s~'+t.. .s~'_-,~176 
Then 

(a) K =/- / .+1.  

(b)  IK f l3 (K) I  <=p'-~. 

(c) K is regular. 

(d) I f  1 <= i <= p and e - i >= n then 13,_, (P)  <= 13e-, (P~)" ~3,_,_. (P,,-1). 

(e) I f  1 <= i <= p and e - i - n >= n then I3 ,_, (P~) = 13,_, (P).  

PROOF. (a)  F i r s t  a s s u m e  e - p - n + 1 -> 0. W e  s h o w  tha t  H,+1 =< 13 e-~ ( P 0 .  B y  

T h e o r e m  5 
pe-p ao 

s l = sl+(,_p_n+l~,_l) m o d  P2+(,-p-,,+l)(/,-l), w h e r e  p n - '  II ao 

a n d  by  T h e o r e m  6 
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1 + ( e - p -  n + 1) (p-  1)= 1 +(q + ( n -  1)+ 8 ( 1 ) - p - ( n -  1))(p- 1) 

= m - p ( p -  1 )+  (8 (1 ) ( /7 -  1 ) -  r ) +  1 = u + 1. 

Now, it follows f rom the definitions of  8(1) and r that  8(1)(p - 1) - r + 1 _-> 0 and 
p r  

m - p ( p - 1 ) > = l + ( e - p - n + l ) ( p - 1 ) = u + l .  Therefore s, E H u + l f o r  i _--- 

1, by T h e o r e m  5. We claim that 

L = ( s ~ - " l l - < i < - m  - 1) = nu+,. 

p n - I  a . p n - I  
For  this we show s~§ ~ L for  j > 1. By T h e o r e m  5 P'-P = sm-l-~ = Sin-1 , ( a , p ) =  1. 

pn--I pn--I  ~ 
There fo re  Sr.-i E L. Suppose  that s.,_, ~ L for  1 < t < i - 1. We  prove that 

. . . .  o II I s m _ , E L ( i  < m - u  1). By T h e o r e m  5 P'-P . a . . . . .  1 .-1 = - -  S r a - - i - - u  = S ra - - i  " " S r a - - 1 ,  p ao, p a,, 

i > 0. Hence  by The o re m  1 

p e - p  --al  ao a l - -a l  [~2 [3 -1 ao [32 [~'--1 
S m - - i - - u "  S i n - - i + 1  m S i n - i "  S m - i + l  " S i n - i + 2  " " " S m - I  m S i n - i "  S r a - i + 2  " " " S m - l ~  

"Yl "Yi--I where  p" - I  I/3,. This way we obtain an e lement  y = s, ,- ,+l- �9 �9 sin_l, p " - I  I y, s.t. 
pe -p  ao ao 

Sr,- ,+u 'y  = Sm-~. Therefore  Sr , - ,E L and H~+I = L =< ~3,-p(Pl). To  show that 

H.§ = /3 , -p (P~)  it is enough to show that xP'-~ E H.+1 for  every x ~ P1. By 

T h e o r e m  2 (f) x p'-" is an admissible word of rank e - p - ( n - 1 ) ,  hence  
al a m - I  I a x P e - P m S l  . . . sm_l ,  wherep  "-p-~ a, f o r p  =<i<p~+~= - 1. I f i  = l + t ( p  - 1 )+ j ,  

a 

0 =< t, 0 =< ] -< p - 2 then by T h e o r e m  5 s, ~'-p-' E H.+I. Hence  to show s , ' E  H~+I, it 

is enough  to show e - p - a = > e - p - t , i . e ,  t_---a. 

(*) For  a _-> 1 p " < = i ~ p ~ < _ _ l + t ( p - 1 ) + j ~ a - < P ~ - l - J < = t .  
p - 1  

a.  
If a = 0 then t = 0 and of course s~'-~E H,+1. Therefore  s , 'E  H,+I and conse- 

quent ly  x e'-" E H~+I, i.e. ~3e_p(Pl) = H~+1. The  same arguments  show that 

~3,_p+I(P~) = H,+p. Assume now that e - p - n  + 1 < 0  and show that ~3,(P~) = 

Hp, ~3.+1(P1)=H2p_1. e - p - n + l < O ~ q + c S ( 1 ) - p < O ~ q < p - ~ 5 ( 1 ) =  < 
a o a 1 __ �9 �9 am --1--p p 1 ::> m -< p 2 _  2. H e n c e  s[ ~= Sp S p + l  " S m + l  by T h e o r e m  5 and 

p~ ao, P -'I a, for i => 1. F r o m  this point  on the proof  is the same as for  the 

case e - p - n + 1 => 0 but write p"  instead of p ~-~ and p"+l instead of p'-P+~. 
< p - - I  

(b) ~3 (K)=  H,+p. Hence  IK/~3(K)I = IHo+I/Ho§ =p . 

(c) Follows f rom (b) (see [8, p. 332]). 

(d) Let  x = s~u, u E P1 and deno te  e = e - i. By the collection formula  

xp. -, (s~)p u p . .  2 t c., c, E K , ( ( s  , u ) ) = P , .  

N o w  (s" )  v" E ~3._.(Pm_~), u p" E ~3~(PI), for  2 -  < t _-<p - 1, 
p" 

cf~')~3~(P1) and clp)~3~_l(Pp) .  
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But U,-~(Pp) = [ I ,  (P0 by part (a) of the theorem. Hence it is enough to show 

that for t > p  

' ~ t ~ ( P , ) .  

If p+l_-<t ,  p~ and l + k ( p - 1 ) < - _ t < = ( k + l ) ( p - 1 )  then 

/3~-. (P,)--</3 ~-k (PO by the argument in (*), with k instead of t and t instead of 

p~ i. Therefore c!' )e/3~_~,(P,) =< /3 ,_, (P,) 

and by (*)(*) xP' - 'E/3 ,_ ,  (e~) ' /3 . - , - .  (P~,-,) for 1 =<i= < p. 
(e) If e - i - n  >= n then ~3,_,_.(P,._~) = 1 and by part (d) the theorem 

/3,_~ (P) =</3,-, (P~). But obviously/3,_, (P0 =</3,-, (P). This proves (e) and the 

theorem. 

3. The p-degree  of commutat iv i ty  of P 

If m _--- p + 2, then [P,, Pj ] =< P,§247 (P, § by Theorem 0.2. Our aim is here to 

strengthen this result. 

DEFINITION. X = S~'S~ 2"'" S~"'"  S~'-q' is a word o[ p rank r if p l a, for 

l < i  <r .  If a , = 0 f o r  l<=i < / x - 1  but a , = 0 d e n o t e  l (x)=l~.  

DEFINmON. P has p-degree of commutativity k if to every i,j s.t. i + j + k =< 

m - 1 ,  
~o ~ ~(,,s) p [s,, sj] = s ,+j . . ,  s,+j§ ..  s,§247 ,+j+k§ 

where p l a, for 0<_-- i _----- k - 1, hut p,~ a( i , j )  for some i and j. 

Denote by F,  (P,) the set of all the words of P, of p-rank tt and write F~ for 

F~(P0. If P has p-degree of commutativity k, then [s,,s,] E Fk for every i, j. 

THEOREM 1. Let P be a p-group o[ type (m, n) of  p-degree of eommutativity k, 

k < (p" + 1)/2. 
(a) I f  k <= /z <-_2k + l and x, y E F,,, then x . y E F~,. 
(b) I[ x ~ F k ,  u ~ A u t ( P l ) ,  l u l = p  r and to every i, l_-<i_-<m-1, 

[u, s,] E rk f3 P,+I then [x, u] ~ F2k+l. 

(c) _-< F2k+,. 

PROOF. Assume we have proved (a)-(c) for words x in F~ or rk resp. with 

l(x) = i + 1 and we prove for x with l(x) = i. Suppose we proved the theorem for 

words x and y s.t. i<=j. If u, v E F~, l ( u ) =  i, l ( v ) = j  and j < i  then we claim 

that u �9 v E F,.. Since P has p-degree of commutativity k, [s,, sj] E FE, hence by 
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(b) of the theorem, to every a E F ,  (with u = si) [a, sj] E F,,. Therefore it follows 

from (b), now with a = u, that [u,s~]EF~. But then to every a,b  ~ F , ,  

[a, b] E F~,. Therefore [u, v] E F~, and since uv = vu[u, v], uv E F~, by (a) and (b) 

of the theorem. Hence it is sufficient to prove the theorem for words x and y in 
F,. (or Fk resp.)with / ( x ) =  i, / ( y ) =  j and j ~ i. 

(a) PROeOSmON 1. To every x, y ~ P ~  with l(x)>=i, [x ,y ]EFk .  

PROOF�9 Induction on l (x) .  Assume we have proved Proposition 1 for x with 

/ ( x ) >  i and prove for x with l (x )  = i. x = s : .  u, u ~ P,.1. Hence 

(*) [x, y]  = [s:u, y]  = IsT, yl[sT, y, ul[u,  y].  

We prove [sT, y] E Fk. By the collection formula s 
[sr, y l = [ s , , y F  2 . . . c , ,  c , ~ K , ( [ s , , y l ,  s,). 

Since [s,, y] E P~§ l([s~, Yl) --> i + 1 and by the induction hypothesis (a) of the 
theorem c, E Fk for 2 _--< t N a. Hence by hypothesis (a) 

z " �9 c,~ ~ Fk. 

Let y sT'. ~ -' sTY7. ~ -' . . . . .  sLY1 for t > 0. Then �9 sin% and denote y, = 

(:g) (~r [ y ,  Si] . . . .  [S~i ,  sl]YI[sT~+I l, Sl] y2 IS ram--1 , S, ] . ~  1 

Now, by the collection formula 

[sT:;', / = s, l a2 "-'d~j§ where d~ ~K,(([s i+, ,s ,] ,s , )  ). 

Since P has p-degree of commutativity k, [sj+, s~]aJ § ~ FE by hypothesis (a) and 
since [sj+,, &] E P,.~ it follows from hypothesis (a) and the induction hypothesis of 
Proposition 1 that (~j.,~ 

I" ~i+ t 1 Hence by hypothesis (a) lSj+,, s,l E Fk f'l P,+t and again the induction hypothesis 

si+,, s,, y,+l] E F~. Therefore hypothesis (a) and (*)(*) yield [y, s,] E FE and this 

implies [s:, y] ~ Fk f) P~+I. But then [[sT, y], u] E FE. Hence (*), hypothesis (a) 

and the induction hypothesis imply that [x, y] ~ Fk. This proves Proposition 1. 
or. ~ti +t ~ - I " Let x s,'  . s , . , .  s , , - l ,  y s~ ~. s~'+, ' ~ -' . . . . . . . . . . .  s~,'_,, / ( x ) =  i, l ( y ) = j  and as- 

sume that x, y ~ F,.. To prove (a) first assume y = s~', p I b. (If p d" b nothing has 
to be proved.) 

PROPOSITION 2. X �9 S~E F,,. 
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b r a m b ct b ct . ot - I  

PROOF. X ' S  i S~"''Sm'.--~"Si S ~ ' '  s , ._~_] . s~ . s ,S~ ' . . . s , , S_~ .Wemayassume  
O t t o _ l _  I b b ~ t m _ l _  j O t t o _ l _  1 that m - 1 - j  > j  -> i. Now, s,._~_~-s, = SsSm-~-s[Sm_~-S, S~. Since i < m - 1 - j  it 

am-- l - -  / follows from hypothesis (b) and Proposition 1 that [s,._l_~,s~ ~ Fzk+~ hence 
~m--l--j (~m--l--j S m-]-~[Sm-~-~,S~ ~ F,, by hypothesis (a). This way, using the identity ~rl 

r/~ .[~,r/] m - 2 j  - 1 times we obtain 

b a .  a~+t, b~+~ b _ ,  S T~ + t ,  �9 b _~ xs i =  s ~ ' . . . s ,  st+] " " s , T q  and . - s ~ - ~ F , .  

But then x �9 s~G F,,, by definition. This proves Proposition 2. 
Let y s~'- o _, = �9 �9 sn,%, j => i and assume that y E F~. By Proposition 2 

x y ( s ? .  s 2 q ' ) ( s T '  " ' ~ " ' �9 �9 . s ; , ' q ) = s ?  . . . . .  - . . . . . . .  . . . .  s~_~s, (s,.~ " ' s 2 q )  

and 

s i ' "  " " o j - ]  o j  ~ 1 §  " " "  s ~ - - ] )  E F . .  

If we repeat this process m - 1 - j times we obtain that x �9 y E F,. This proves 
(a). 

(b) Let x = sTg, g ~ Pi+l O F~, p I a, and assume that x ~ F,, u ~ Aut(P1) and 
u satisfies the conditions of (b). 

(*) Ix, u] = [sTg, u] = [sT, u ][s, u, g][g, u]. 

Since P has p-degree of commutativity k and u satisfies the conditions of (b), 

[si, u] ~ Fk O Pi+l. Hence by the induction hypothesis, to every w ~ Aut (PI) that 

satisfies the conditions of (b), Is, u, w] E F2k+l. In particular c, E F2k+, and 

!~ 2 
C " " " Ca ~ F2t,+]. 

It remains to show that [s,, u]" E FEk§ [s,, u] ~ Fk n P~+~. Hence by hypothesis 

(c) [s~, u] '~ E F2k+~ (p l a )  and by (a) and (*)(*) [s?, u] ~ F2E+I. Now, g ~ Fk O P~+I 
and since Is,, st] E P~+1 n Fk to every s, and s,, [g, st] U Pj+I n Fk to every s, by 
hypothesis (b). But then, [ST, u, g] E F2k+l, the induction hypothesis (b). Also, by 

the induction hypothesis [u, g] E F2k+], hence [x, u] ~ F2E+~ by (*) and (a). This 

proves (b). 

(c) Let x = s'~g, g ~ P~+~ and assume that x ~ Fk. Then, by the collection 

formula 

x p -- (sig) p = s~ ~ . " c ~ ,  where c, ~ K, ( (sL g)). 

Since s ~  FE and g ~ F E n  P~+~, (b) implies that c, E F2k§ for 2 _--< t =<p. Hence 
C 0'2) P 2 " ' "  Cp E F2k+l,  by (a). Now by the induction hypothesis (c) u ~ Fzk+~ and, of 
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course, s,P• F2k+l since 2k + 1 <p" .  Therefore by (a) x p E F2k+1. As every 

element of U(Fk ) is a product x f . x  ~ . . .  x ~, xj E FE, U(Fk) < F2k+,, as required. 

COROLLARY 1. Under the conditions of Theorem 1, [U(P1), P1] =< F2~§ 

PROOF. By Theorem l(a) it is enough to prove that to every x,y E P ,  

Ix', yl E r2k+,. 

(,) [xp, y] [xy]P 2 . . . .  c~, (c, ~ K, (([x, y], y ) ) )  

By Proposition 1 [x, y] E Fk, hence by Theorem 1 (a), (b) 

i E F2k+l. 

Hence, by Theorem 1 (a) 

2 
C " " " Cp ~ F 2 k + l .  

Since [x, y ] P ~  F2~+~, by Theorem l(c), (*) and Theorem l(a) imply [xP, y] 

F 2 k  +1.  

PROPOSITION 3. Let P be a p-group of type (m, n)  and assume that P has 

p-degree of commutativity k < (p" - 1)/2. Let 

a 0 a I a (il,] l ) 
[Si l  , Sjl ] ~ S i I + j I S l I + J I + ' |  " " " s~l+j,+kmoa P~,+j,+E+I, 

bo bl ~ ( i2 ' ]2)  ~ l  
[s,~, s J  = s , ~ + , ~ s , ~ , ~ . ,  . . . s , ~+ ,~ .~  mou P~.~+~§ 

(a) I f  i, + j, = i2 + j2 then 

_ _  CO a ( i l , J l ) +~  e 
[Si, ,  St,]" [Si2, Si2 ] = S i , + i , ' ' "  S i , + i , + k  m O Q  P i l + i , + k + l .  

(b) I / i l  + j2 < i~ + j= then 

C O a (il . /1)+Pt [s,,, s,,] " [s~, sl~ ] -- s,,+j," �9 �9 s,,§ mod e,,§247 

a o PROOF. ( a )  [ s j , ,  s , i  ] [ s ,2  , s h ]  ( s  , ,+ j ,  ~  bO r " = �9 �9 �9 S ~+i~§  I,S iz+i2" " " S i2+i2+k) m o o  P i ~ + i l + k  +i.  

In the collecting process we use the formula ~:r/= ~ff[~, r/]. Hence it will 
suffice to show that 

a u b a a ( i , j )  �9 

[s,,+~,+~, s,~§ E Fz~+1(P,,+j,) and [s,,~§ a,~.jz+ q E F2~+~(P~+h). 

Since p la~, p I b,. the first membership follows from Theorem l(b) and the 
second from Corollary 1. This proves (a). (b) is proved similarly. 

Trmom~M 2. Let P be a p-group o[ type (m, n)  and assume that P has 
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a o a ( i , j )  J ]r~ p-degree of  commutat ivi ty  k < (p" - 1)/2. Let  [s~, s~] =- s,+~.., s,+~+~moor~+~+~. 
Then 

(a) 

every 

(b) 
(c) 

a ( i , j ) a ( i  + j + k, l) + ~(], l )a(]  + l + k, i) + a(l ,  i )a(1  + i + k , j )  =- o ( p )  [or 

i, j, l w i t h  i + j + l + 2 k  < m .  

a ( i , j ) +  a ( j , i ) = - O m o d p ,  for every i and j with i + j + k < m .  

I f  k <=p - 1 then a ( i , j ) -  a ( i  + 1 , j ) +  ol(i,j + 1 )modp  for every i, j with 
i + j + l + k < m .  

(d) I l k  ~ p - 2 ,  then a ( i  + p - 1,j)=- a ( i , j  + p - 1)---- a ( i , j ) m o d p ,  for every i 

and j which satisfy i + j + p - l + k < m. 

a 0 ~ ( i , j )  a 0 PROOF. (a) [s,, sj, st] = [s,+,. . . . .  s,+,+ku, st] Is,+,, s,] *~ lS,+,+k,' ~(~') Stl'*, .[u,s,] 
a +  1 r ( i , j )  I where u~Pi+j+k+l,  o ' ,=si+j+, .~.- .s~+j+k-u a n d p  a~ f o r 0 _ - < i - < k - 1 .  Let  us 

a t compute  [s~+j+,, st]. By the collection formula 

a t [s,.j§ s,] = [s,§247 s , ] "  d 2 " -  da. where d, E K~((s,§247 s,], s , ) := K,. 

Now, by definition, Is,§247 st] E F~ (P~+j§ Hence  [s,§ st] ", E 

~J(Fk (Pi§247 r2k§247247247 by Theorem l(c). Since d~ ~ K~, Theorem l(b) 

implies d, E [Fk (P,§247247 Pt] <- Fk§247247247 and Theorem l(a) together  with the 
a f  a t collection formula implies [s,§247 st] ~ F2~§247247247 Obviously, [[s,§247 st], o',] E 

F2k§247247 Hence  by Theorem l(a) 

- -  I 0 t2k �9 a ( i , j )  (*) [s,,sj, st] = s~§247247247247247 st ]modP,+j§247 I1, fo r  O =  < t -<2k. 

r ' *  ( ' , i )  1 Next, we compute  [si+,+k,s d. Denote  a = o~(i,j). Then, by the collection 

formula (~ 
'* IS S l'~d 2 [s,§247 = t ,+J§ tj ~ "--d~, 

where d. E K , : =  K~(([s,+j+k, st], st)) for 2 _--< v --< a. 

By Theorem l(a) and 

d~ F2k +l(Pi+/+k +t). . . ~  

c o ~ ( i + j + k . l )  
NOW, [s,+i+~, st] ~ = (si+i+~+t" " s,+~+t+2, " u )  ~, where u ~ P~+~+t+2~+~ and p I c, for 
0 =  < t __-< k - 1. There  exists a u ' ~  P~+j+t+2~+~ s.t. 

S i + j + k + t  " c k - t  �9 tx  a ( i + j + k , t )  [ S i + j + k ,  S t ]  = co ' " S~+j+k+t+k+l U )Si+j+t+Zk �9 

Co " c k - I  " U t .  Denote  v = s,§247 �9 s~§247247 Then by the collection formula 

s a ( i + j + k , t ) ~  a S ~ ( i + j + k , l ) ' a  2 
[ S i + j + k ,  S t ]  a = ( V  * i + j + l + 2 k  ] -~" V " i + j + t + 2 k  " 2 " * " C a ,  

=~ / /  e t ( i + j + k , j ) . x  
where c, ~ K,: =/s,, (~v, s ~§ )). 
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Since v EF~+I(P~+j+,+k), c,E[Fk+,(P~+~+l+k),P,+i+k+,]<F2k+~(P~+j+,+k), by 

T h e o r e m  l(b).  As v ~  Fk+~(P~+~+t+k), by T h e o r e m  l(a), it follows f rom the 

collection formula  and T h e o r e m  l(a)  that 

or(i , , )  b 0 b k _  I S C Z ( t , j ) ~ ( i + ] + k , I ) + p r  
S i + l + k ,  S l ]  ==- S i + l + k + l "  " " S i + j + 2 k - l + l  i + i + 2 k + l  rood e,+i+2k+l+l 

and by (*) 

a o 
( ~ r  [ S i ,  S , ,  S l ]  ~ S i + ' + '  * Q . . . .  S ~ ( i ' ' ) a ( j + ' + k ' / , + p '  " - -  �9 " S i + , + 2 k - l + l "  i + i + 2 k + l  m o ( ] / " i + / + 2 k + l + l  

where  p I a, for  0_-< t _-< 2k - 1. We shall use the identi ty of Witt:  

--1 s. --s -1  s. 
Is,, s ,  , s , ] ,  = [Is,, s , l  , ,  s , l ,  

= [s , , s , , s , [ s , , s , ] ]  

= [[s~, s , ] ,  is,, s , ] ]  Is,, s,, s,]t','~ 

= [s , , s , , s , l [ [ s , , s , l ,  ts , ,s , ]]  

�9 [[Is,, s,], Is,, s,]], Is,, s,, s , ] ] - [ I s , ,  s,, s,], Is,, s,]]. 

Now, using the collection formula  and T h e o r e m  1 as several t imes above  we get 

[Is,, s,], Is,, s,]] ~ F2k+I(P~+,+,) and [Is,, s,, s,], [s,, sj]] E F2~+~(Pi+,+,). 

H e n c e  [s~, s [  1, s~] ~, -- [s,, s, st] mod  F2k +x(P,+,+~ ) and (*)(*), with T h e o r e m  1, yields 

[Si~ --1 s a a I a 2 k _ l  - - ~ ( i . , ) c r  . r  s~ , s~] ' -- s ~-,+~ �9 s,+,+t+~ �9 �9 " s ~+,+~+2k-~ " s,+,+t+2k mod  P~+,+~+2k+l, 

where  p [ a, for  0 -< t =< 2k - 1. The re fo re  (a) follows f rom the identi ty of Witt.  

(b) Follows f rom the identi ty [s~, s,][s,, s,] = 1. 

(C) CLAIM. I[ x E F k ( P I )  then [x , s]Erk+l(e , ) .  

PROOF. Induct ion on l(x).  Let  x = sTu, u E P~+1 and assume that x E Fk (P~). 

Then  u ~FE(P~)CqP~+~ and p la .  

(*) 

NOW, 

Ix, s]  = [s: ,  s l [ s~ ,  s, u l [ u ,  s] .  

[ s t ,  s]  s7+1c 2 . . . . C a  , c, ~ K,((s ,+l ,  s ) )  = P,+,. 

Since p I a, s'~§ Fk.l(Pi).  By T h e o r e m  1 

2 �9 c 1 E rE (P~+I) < l"k+l(Pi) hence C " " s"  c . . .  e r ~ + , ( P , )  i + 1  2 
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As cp E P~+p and k = < p -  1, [s':,s] ~ 1Pk+l(Pi), by Theorem 1. This proves our  

claim. 

--1 sj --1 
[Si+i ,  Sj] = S i + i S i + i  = S i + l [ S  i [Si, St] , ssTl+i]  

- i  - i  - i  [sesl] - i  .~.1 = s,+l([s, .st§ s . d )  . [ s , . s , . s . d [ s , . s . s l  ,+'. 

- I  - 1  Denote  v = [s,, st+~]s,+l[s,+l, sj+l]. Then v E P~+l. Since [s,, st] E Fk (P~+t), 

[v, [s,, st]] ~ r~,§247 and [s,,st, si~+l] ~ F2k+l(P~+j), [s,,st~l,s,+i] E F2k+l(P~+~) by 
Theorem l(b). Hence  

[Si+i,  Sj]  ~ [Si, 8j'-+1 ] [Si+l, Sj-+li] [Si, St, S] mod r ~ , + , ( P , + t ) .  

F2,+l(P~+t) --< r~ (P,+~+2) and [s,+l, st-)l] ~ F~ (P,+t+2)- Hence  

[s,+l, s~] - Is,, si~+l] Is,, sj, s] mod F~ (P,+t+2) 

and a ( i  + 1, j)-= - a(i , j  + 1)+ a( i , j )+ kp m o d p  ", by our  last Claim, Proposi- 

l(a). Therefore  a (i, j )  -= a (i, j + 1) + a.(i + 1, j ) m o d  p, as tion 3 and Theorem 

required. 

(d) For  j _-> 1, 

, . ( ; )  ~ , . 1  
S i  S j + p - 1  " " " S i + t "  " " 5 j + p " - I  " U = 1 ,  

where u E P~+:. Z ( P )  and p"-~ I a, for p~+l ---- t =< p,+l  and p"-~ I a, for t = p ~-', 

by Theorem 2.4. Hence,  to every i -> 1, 

"'(f) " .1=,. [&, S i S i+p- i  " " �9 S j - p - - 1  " 

Let v E P/+2(p-~)+i. Then 

N [s,, 57" ' v] [s. sT] Is,. " '  . . . . . .  O j + p - ,  "Jj+2(p--1) ~ S j + p - - , ]  ~ [Si, Sj+2(p--1)] ~ l o [Si, 7)] 

ar ap_l+ t ~Tp+ t where o', = sj+~_~), v. We show that for t - 1, [s~, sj+p-l+,] E P,+j+p+k. For this 

it is enough to show [si, ' - '* '  st+~,_l+, ] E P,+i§ We may assume that t = 1 since the 

calculations are the same for t => 1. It follows from the collection formula that 

st+p]= [ ] " "co , ,  where lap, c, EK,:=K,((s,,[s,,st+p])). (I) [s,, "~ s , , sm , "  2) p,-1 

PO a(i'j+P) 
Since P has p-degree  of commutat ivi ty  k, [s~, st+p] = s,+t+p" �9 �9 s,+t+~+~" vl where 

vi E P~+i+p+k+l and p I c, for 0 -< t =< k - 1. Hence,  by the collection formula 
/ . \  

(II) [s . , ,s ,+, ]*  ~ *,.,o. -( , t+,)%-, I~} = s ,+j+ ,  "" 5,+j+,+k v i �9 d "'" d . , ,  d ,  E K ,  (P ,+t§  

Since p"  I P, "ap for 0-_< t < k - 1, as p I P, and p"-I  Iap, it follows from 

Theorem 2.4 that si+~+p+,E~'*~ P~+t+2p-1 = < P~+t+p+k, as k < p - 1. Obviously 
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a ( i,j + p )ap 
s~+j+p§ "vlEP~+i+~+k. Hence d~ EK~(P~+j+p) implies that for tt >2 ,  

d~ E P~§247 Therefore 

(III) [s,, sj+p]% E P~+,+p+k. 

By similar calculations it is easy to show that for 2 _-< t _-< p - 1 

But for t_->p obviously c, E PJ§247247 Hence (I), (II) and (III) imply that 

Si ,  ap s,+p] E P~+j+p§ This means: 

p"Si( p"! (IV) [s,,s/ fp " l---[s,,s~"1%-' [s,, %-' % i " "  �9 st§ ] modPi§247 

[ s , , s f ] ; [ s , , s , l  . . .  P 

by the collection formula, where c, E K,:= K, ( ( [ s . [ s , , s j l ] ) )<=P,§247  Pj .... 

Again, by the collection formula 

pn  * lk--I �9 S i + ] + k u )  [s,, st] = (s l  ~ " S i + ,  +I �9 �9 �9 S i + l  + k - I  aO.t ) pn 

~0 ~ ~ ( i , , ) b  
= S i + j + 2 ( p - l ) "  " " S i + i + 2 ( p - 1 ) + t "  " " S i + j + k + p - I  " 0 

where p " - '  l l-,, p I l,, u Eei+,+,+,, v E P,+,+k+p and 

b ~- - ~- - p " - l  mod p". 

Since by assumption k < p  1, [s~,sj] "~ ~0,.b -- -- S~§247247 mod P~§247247 Also, as 
c, E P~§ a similar calculation shows that 

e o e2k 
Since c~ = s~ �9 �9 �9 S,~§247247 U~ for a certain ~ >-- j + ip and Ul E P,~§247 where 

P l e ,  for 0 < t  <2/< (by Theorem l(b)), c .  E P(~+.§247 where v = 

m i n { 2 k + l , p - 1 } .  But i + ] + ( p - 1 ) + v ~ i + / + p + k  ( k < p - 1 ) .  Hence 
pn-I 

cp @P,+j+p§ and 

(V) [s. oj~ . . . .  - ~ ~§247 mod P~ §247 where b - p "- '  mod p ". 

By a similar argument 

lS, S~§ 1 =- S~§247247 moaP~§247247 where b , - -  m o d p L  

Therefore  (IV), (V) and (VI) imply that (o~(i,] + p -  1 ) - o ~ ( i , ] ) ) p . - I - - o ( p . ~ ) ,  

i.e., a ( i , ]  + p -  1 ) - a ( i , ] ) m o d p .  This proves Theorem 2. 
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The following theorem is the main result of this section: 

THEOREM 3. Let  P be a p-group of  type (m, n ). A s s u m e  that P has p-degree o f  

commutat iv i ty  k. I f  m > 3p - 6 + 2k then k >-_ p - 1. 

PROOF. Assume k =< p - 2. Then the a (i, j) 's defined in Theorem 2 satisfy the 

conditions of Shepherd's Theorem [12] (see also [7]). Hence m < 3 p -  6+ 2k, 

contradicting m > 3p - 6 + 2k. 

COROLLARY. I f  m >- 5p - 10 then 

By the aid of Theorem 3 we may 

k > - _ p - 1 .  

find the exponent of P, for m _-> 5p - 10. 

THEOREM 4. Let  P be a p-group of  type (m, n)  and assume that P has 

p-degree o f  commutat ivi ty  k >= p - 1 .  Let  m - l = q (p  - 1 ) +  r, l_-<r_-<p-1, 

exp(P1)= p" and let x ~ s ~ ' . s ~  . . . .  s~'modP,+j be an e lement  o f  PI, where 

O < - a ~ < p " f o r  l<=i<=r. 

(a) I f  p I a, for 1 <= i <= r then x p'-' = 1. 

(b) I f  p ~ a, for at least one i, l<=i<=r and io is the first such i, then 

% . a _,_, p n - ~  I x P ' - '  = s . . . .  ~o " s ~,_~ , where aj [or O < j <= r - i 1. 

(c) For i _-> 1, exp(P,) = Is, I. 

(d) f~,_.(PI) -> Pp- D(P~), p -~ I P , /~e- , (P, ) I  <= pP-' and P/I) ,_~(P) is regular. 

PROOF. Let us prove (a), (b) and (c) by induction on cl(P). If c l (P )=  2 

everything is trivial. Assume (a), (b) and (c) hold for P with cl(P) = j and prove 

(a), (b), and (c) for P with cl(P) = j + 1. By Lemma 0.1 we may assume that (a), 

(b) and (c) hold for Hi = (P~, s), i _-> 2 and prove them for P. Denote x = sTu 

where u -= s~ 2.-.  s~'mod P,+I. 

C L A I M .  X p~-~ = S~ 'p" ~ " U p '-~ 

U) PROOF.~ (SrU)p.-l= S~.pe-,C 2 . . . . .  Cp.-,, by the collection formula, 

where c, E K~((sr, u )) _--- Pi +2. Hence, if Is,+21 = pe then cfe'= 1 by hypothesis (c). 

If r + (k - 1)(p - 1) _-< i + 2 < r + k (p - 1) then Is,+21 = Pe-k by Theorem 2.6. 

Hence, exp(P,§ = p e-k by hypothesis (c) and c f.-k= 1. Denote 

((?)) Vp P = /.tl - -  1.  

I f p  ~ _ - < i < p ' + l t h e n  ~ - l _ - > e - l - a .  Now, for o~_->2 

k > i  +2-.__ r__p '~ + 3 - p > _ p  ~ - l _ l__>a  
p - 1  p - 1  p - 1  
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hence  /.,~ - 1 => e - 1 - t~ => e - k. T h e r e f o r e  

c = 1  f o r p 2 < i .  

A s s u m e  a =< 1. Since P has p - d e g r e e  of commuta t iv i ty  k = > p - l ,  c~--- 
a~ a~_~ 

S~+2" " " a,+p m o d  P~§ where  p I a~ for  0 _6- < i =< p - 2. As  for  i => 2, c, E P4, 

c ! P ; - ' ) - 1 ,  for  2__<i__<p_ 1 

by the induct ion hypothes is  (c). H e n c e  assume t~ = 1. For  p _-< i, c, E Pp+2, hence  

by hypothes is  (c) and T h e o r e m  2.6, c~ "-~ = 1 for  p _-< i < p2. This  p roves  our  

Claim. 

(a) By hypothes is  (c) u p ' - I =  1 and by T h e o r e m  2.6, s~ ' p ' - ~ =  1. H e n c e  (a) 

follows f rom our  last Claim. 

(b) If io => 2 then u p`-' = s~,~247 . . .  a ~7_'l o by the induction hypothesis .  Since 
p l a,  s7 p ' - l =  1 and (b) follows f rom the last Claim. If i0 = 1 then 

x p c - l =  ( s l ) % ' - l u  . - .  . - .  

by T h e o r e m  2.5 and the hypothesis ,  where  p ' -~  I aj, b~ for  0 =< j =< r - 1, 0 =< l =< 

r - 2 .  Since P~_, is regular  for  r = < p -  1, by T h e o r e m  2.7 x p'-'= s~_ , . . ,  s2,-~ 
where  p"-~l c, for  0 =< j < r - 1. 

(c) For  i _-> 2 (c) is just the induct ion hypothesis .  For  i = 1 (c) follows f rom (a) 

and (b). 

(d) By (c), exp Pp = I se I. Hence ,  by T h e o r e m  2.6, Gp __6 < fl,_~(P~). This  implies  

that  P~/t),_~(P 0 = P~ is gene ra t ed  at most  by the p - 1 e l ements  g~, gz, �9 �9 ", gp-l. 

On the o the r  hand  f~(P~)<=f~,-~(PO, hence  Pp.(PO<--Ia,_I(PO and every  

e l emen t  x = s~ s2 " -  sp~-q I m o d  Pp s.t. p I a, for  1 _--- t =< p - 1 belongs  to I),_~(P 0. 

T h e r e f o r e  p <= IP~/f~,-~(P~)[ <= pP-I. Finally 15 = P/I~,-I(P~) = (g). P~. Since 

[gP, P~] <= Pp. I~(P~) and (gP)<= P has class = < p -  1. H e n c e  t5 is 

regular .  

COROLLAI~V. Let P be a p-group of type (m, n) and assume that m >= 5p - 10. 

Then (a), (b), (c) and (d) hold for P. 

Paoov .  Follows f rom the corol lary  to T h e o r e m  2. 

PART B 

4. p- local subgroups of finite groups with a Sylow p- subgroup of type (m, n) 

For  n = 1 the results  a p p e a r  in [10]. H e n c e  we deal  here  only with the cases 

n => 2. T h e  main  result  is: 
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THEOREM 1. Let G be a finite group with a Sylow p-subgroup P of type (m, n),  

n _-> 2, p _-> 3, m _-> (n + 5)(p  - 1) + 1. F o r H  <-_ G denote ISI = HOp,(G)/Op,(G). I f  

Op ( G ) is not cyclic and P'~ ~ 1 then P / k  G and Cr = P " T is a semidirect product 

of fi and 7", where 7" is cyclic of order r, z I P - 1. 

Briefly, the p roof  is this. Let  G be a minimal  coun te rexample .  Then  

Op,(G) = 1 and C z ( O p ( G ) ) =  Ce(Op(G))  <- Op(G).  Also NG(P) /OP(No(P) )  ~- 

G /OP(G) .  H e n c e  if we find a normal  subgroup  N of G in Op(G) s.t. 

[Op(G) /N  I = p  then e i ther  O p ( G ) / N  is noncent ra l  in G/N,  in which case G is 

not a minimal  coun te rexample ,  or  O p ( G ) / N  is central  in G/N.  Since 

N~(P) /OP(N~(P) )  = G / O ~ ( G )  in this case G has a normal  p - c o m p l e m e n t ,  

again a contradic t ion to the minimal i ty  of G. In Propos i t ions  1-3 we locate 

Op ( G )  in P and construct  a normal  subgroup  No/~ G in Op ( G )  s.t. O~ (G)/No is 

e l emen ta ry  abel ian of order_-<p ~+~. Proposi t ion  4 shows that  C z ( O p ( G ) ) =  

Cp(Op (G))  and in Proposi t ion  5 we construct  N / k  G with I O~ ( G ) / N [ =  p. 

PROPOSITION 1. Let H be an elementary abelian normal subgroup of P and 

assume that e x p ( P ~ ) =  e _-> 2n + 1. Then: 

(a) I f  H <=P,_, then IH[<-p '. 

(b) IHl<=p p" and if H <=P, then IH]<=p p"-'. 
(c) I]: H <=D,_,(P) and e = e - i  >=n then [Hl_-<p ' ~ - ' .  

(d) I f  In [  = P~, d <-_p~ then II~(P)<= C,,(H) and P;~ <- C,,(H). 

PROOF. (a) Since ei_l/Pi is cyclic, I H n P j _ J H n P j I = I ( H n P ~ - I ) P j / P j l  < 

p ~ l n l < = p  '. 
(b) Assume  H - P1. Then  by Propos i t ion  0.2(b) we may  assume that  H ~  P2. 

If x E P~ then we may  write it uniquely by x = l-IT-]s'/', O<=a~ <p~. If 

a = q  .p', (q ,p )  = 1, deno te  vp (a )  = t. As sume  that  X = {x~,-. ",xd} is a set of 
m 1 Sat (i) genera to rs  of H and x~ = I I j~  , . If  x ~ , - . - , x ,  r -< d, are all the genera to rs  

of H in X s.t. ct~~ 0 and a ~ ' =  mini Vp (a~~ then there  exist number s  a2," �9 ", ar 

s.t. {x l, x2x ~ -a2, �9 �9 ", x,x ~-a, xr§ �9 �9 ", xe } is a set of genera to r s  of H and x~ �9 x ~-a E/: '2 

for  2 _--- i _-< r. If  we cont inue  this way we obtain  a set of  genera to rs  {y~, �9 �9 yd} of 

H,  y, = II~"=~1 s7 '(" with a ) ' ) =  0 for  i < j  and vg(a~)<= vp(otj) for  i > ] .  If x E H  
m--i-1 ~ < p n 0 ~- < and x=l- l ,=0 s,+,, where  a ~ 0 ,  0 = a , + , <  and t = m - i - 1 ,  then 

v p ( a , ) = n - 1 ,  o therwise  x P ~ l m o d P ~ + , .  H e n c e  v p ( a l ) = n - 1  to every i, 

1 =< i =< d in the set of genera to r s  {y~, �9 �9 ya} we have  cons t ruc ted  above.  D e n o t e  

t, = [y,, (i - 1)s]. Then  

t f~ . t  2 . . . t i i  . . . t p . ~ l m o d P ~ - + ~ .  
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pn-1 
But tp. = sp. u, where u E Pp.§ Hence s~ = 1 and H is generated by p" - 1 
elements. Finally if H =<P then since P/P~ is cyclic, IH I _-<pP~- 

(c) by Theorem 2.5, 

~0 pn-I§ 

Si H %+1 = S i §  ~ 
iz~O 

where/~o = m - i - 1 - t(p - 1). 

Hence if t = 1 then U,~_~+,(P,)=<PI+,0,_,). If x = s~u, u E P~, then by the 

collection formula /'t x~. = (s~)P.u ~, . . . i " " cp., where c, ~P i .  

Now, s~" '~  P,_,  and 

(k + 1)(p - 1) then 

u P ' E U , ( P 0 .  If p ~ < = i < p  ~§ and l + k ( p - 1 ) = < i -  < 

Since k _-> a, 

c i ~ U~-~ (Pl+k0,-l>)- P~,-,~,-I>, 

by Theorem 2,5. (Consider the subgroup (P~+k~,-~),s).) As u P ' E  U~(PO<= 

Pm-~-,), hence U,_,(P)  <- Pm-,~-l). But then H_~ Pm-~-~). Therefore I HI--< 
p'~-'), by (a). 

(d) We may embed P/Cp(H)  in GL(d ,p) .  Hence U~(P)<=Cp(H) and 

Ppo <- Cp(H)  by theorems 16.3 and 16.5 respectively in [8, p. 382]. 

PROPOSITION 2. L e t A  A P ,  A ~ P ,  e x p ( A ) = p  ~. Let H <- U~_I(A ), H ch A 

and assume that Cp(K) <- A for every noncyclic characteristic subgroup K ~ 1 of 

A.  I[ H is elementary abelian, IHI > p, and exp(P~)=>p 2n§ then 

(a) H is elementary abelian of order <- pe-X. In particular 112(Z(U,_I(A)))/=< 
pp-l. 

(b) U(P)=<A, P~<=A. 
(C) ~,-1(P1) ~ I'~(~,_2(A )) --< U,-2(/),). 

(d) U,-,(P,,-p+I)= O(U,-2(P,))= n( tL-~(A)) .  
(e)  I f  m -> (n + 5)(/7 - 1) then A = P~. r 

PROOF. H --< P, H is elementary abelian. If I H I =< P a and d =< p ~ then a _-< n 
by Proposition l(b). Hence U.  (P)--< A _--< P by Proposition l(d) and 

(0) U,-I(P)  < U,- ,_,  ( a )  _-< I3 ,-1-, (P). 

Since H =< U,-~(A) obviously H =< U,-~-~ (A)_-< U,-~-, (P) and H =< 
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U,_~_~(P). Since e_->2n+3,  a_-<n and e - a + l _ - > n ,  by Proposition l(c) 

d -< (a +1)  (/7 - 1 ) .  Now, if d > p ~ - I  then p ~ - ' - l < d _ - < ( a + l ) ( p - 1 ) ,  i.e., 

p " - l -  1<(o~ + 1 ) ( p -  1). But for o~ ~3 ,  p " -  1_-> (a + 1 ) ( p -  1). Hence ot _-<2 
and by (0) 

(1) U._,(P)  _-< U ,_3(3 ) _-< U e-a(P). 

Since e -> 2n + 3, Ue_s(P) = U._s(P~), by Theorem 3.4, and U~-s(P) is regular. 

Moreover I~'~(~Je_s(P))l--I~'~(~Je_s(P~))I = I ~ J e _ 3 ( P l ) / ~ J e _ 2 ( e l ) l  = pP-~. Hence 

(2) fla(U,-3(P))I = p~-l. 

On the other hand since U,-2(P1) is regular, (1) implies that 

1 < U,_~(P) _--< I)(U,_3(A )) =< fI(U,_3(P)) = f~(U,-3(P~)). 

But 1)(/3 ,_~(A )) =< 1)(/J,-3(A )). Consequently 

H -< I ) (U ~-1(A )) =< ~(U,_3(A )) -< Ft(U,_3(P)). 

Therefore IHI-< In(t~,-3(P))l and by (2), IHI =<pP-~, as required. 
(b) By (a) a = 1. Hence (b) follows from Proposition l(d). 

(c) Since a = 1 by (a), (c) follows from equation (0). 

(d) Since U(P)=< A by (b), U,_2(P1)_--- Ue_3(A)=<U,_3(P~). Hence 
f~(~3,-2(P,)) --< I~(U,_3(A )) - f~(U e-3(P~). But as p _--- 3, f l (U ,-2(P,)) = 

f~(U,-z(PI)). Therefore O(13,_2(P~)) = f l (U,-3(A))  and since U,-~(Pm-p+I) = 
f~(U,-2(P,)), I)(U,_3(A)) = U,_I(P,,_~+~). Note that this means that U,-~(P,,-p+I) 

is characteristic in A. 
(e) Let K =/3,_~(Pm_p+~). Then K ch A by (d), K is elementary abelian of 

order pP-t and hence C v ( K ) < = A .  On the other hand since K =  
p n - 1  p n - I  ~ ~ = 

(s~_p+~, . ' . ,  sm-~), s, E C e ( K )  < A for 1 < i < p - 1, by Theorem 3.3. In particu- 
lar 31 U A and since A A P, P~ _-< A. Since U(P)_-< A by (b) obviously s" ~ A. 
Hence P~-(s p) = P~. ~(P)_-< A. But P~. q~(P) is a maximal subgroup of P and 

A # P. Hence A = P~. ~(P) .  

PROPOSITION 3. L e t  P be a p - g r o u p  o f  type (m, n), A = P ,  . ~ ( P )  a n d  a s s u m e  

that  exp(P1) = e > 2n + 1. T h e n  

(a) To every  u E PI and  to every  a >- 1, (s p".  u )  pc-1 = s ~ . . . . .  �9 u p'-1. H e n c e  

( s  . ~  . u ) p . - 1  = u , . - l .  

(b) I f  u E P~ a n d  l u I = p" then  Is p" . u [ = p" for  every  a >= 1. 

(c) I f  u E P~ a n d  u p'-I = 1 then  (s '~  p'-l= 1 for  every  a >-_ 1. 

(d) f l . - l (A)  = t l ,_l(e , ) .  (s ' ) .  
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(e) A/d~(A)  is (elementary abelian) of order at most pP+~. 
(f) I f  t E No(P)  and s' =- s~ modP2, where a ~ Z, then (sP) ' -= 

(sP) ~ mod O(A) .  

(g) I fL_ , (A ). ~ ( a  ) /~ (a  )[ =< p P. 
pe-I 

PROOF. ( a ) ( s m . u ~ " - ' = s m + ' - l u P ' - ' c ( P 2 " 2 - ' ) " ' c !  ' )"cp,- ,  by the collection 

formula,  where  c, EK,((s•,u))<=lP,. We show that 

d = 1 for  t => 2. 

[s~",s,]= sP" 22 " " d  t ""d~, ,  where d, EK,((s,s,+~))< 

by the collection formula.  H e n c e  [s p", si] E Fp-t(P,+~). Since c, is a p roduc t  of 

commuta to r s  of [s p", s, 1 with xj, where  xj E {s p', s,}, c, E Fp-t(P,), by T h e o r e m  

3.1. If 1 + k (p  - 1) _-< t N (k + 1)(p - 1) and c, ~ Fp_,(P,) then by T h e o r e m  3.4, 

c, p . . . . .  = 1. If p~ -< t <p"+~ then 

Now,  by the computa t ion  in T h e o r e m  3.4, e - 1 - a _-> e - 1 - k. H e n c e  
I 

' / = 1  

and since e _-__ 2n + 1, (smu~ ''-~ = u ~'-~. 
(b) and (c) are consequences  of (a). 

(d) Le t  x = sn'u, where  u E P~ and a => 1. By (a) x p'-' = 1 ~ u ~'-~ = 1. H e n c e  

C = {x E A Ixn ' -~= 1}= {x E A Ix = sP*u,u ~" = 1} is a set of genera tors  for  

~ , - t (A ) .  l~,_t(P~)={u EP~IuP' - '=  1} by T h e o r e m  3.4. H e n c e  C =  

n . - t ( e l )  �9 (s  ~) = n . _ t ( A ) .  

(e) Since r  --< r  to compu te  A / ~ ( A )  we may assume ~ ( P , )  = 1. Now, 

[s ~, st] E A '  <-_ dp(A). On the o the r  hand  [s p, s~] = sp+t by the collection formula  

(~ (P t )  = 1) hence  [s ~, st] - sp+t mod  * ( A  ), i.e., sn+~ E * ( A  ). Since * ( A  ) A P and 

o(e t )  <= A, A / r  = (g,, gt, " " ", gp) where  s = x .  * ( a )  for  x E P. 

(f) (s s2 " " s , - 1 )  - s "- ' sm_t  "c2 ""cp ,  where  c, ~ K,((s ,s2 , "  ",s~'-q')) < 
P,+t. H e n c e  ,() !') P 2 

c i EFp_~(P~+t) and c - . . c~  EFp_t(P3). 

In part icular  

c 2 "'cp=-s3 " " s p  modP~+t,  w h e r e p l / 3 ,  f o r 3 - < t = < p .  

a a 2 T h e r e f o r e  by (e) and T h e o r e m  3.1, (s s2 " ' "  s~,'_q'~' = s ' ~ m o d ~ ( A ) .  
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(g) s, ~ I~,_,(A )" O(A ), by (c) and (e). Therefore (g) is a consequence of (c). 

We now begin the proof of Theorem 1. Assume that G is a minimal 

counterexample. Then O~,(G)= 1. 

PROPOSITION 4. Let N A P and assume that N is not cyclic. Then C = 

c o  = 

PROOF. If N A G  then by the minimality hypothesis K - - N o ( N )  = 
Op,(K). P .  T, where T .  Op,(K)/O,,(K) is cyclic of order r, r I P -  1. Hence 

C = C6 (N) = Op,(C). Cp (N). So assume N A G. If K = C~ (N).  P ~  G then 

Nk(P) = P" Cr(P) and K = Op,(K). P, [O~,(K),N] <- O,,(K)tq N = 1, hence 

Op,(K)<= Op.(C6(N)), which proves the proposition. Assume therefore G = 

C6 (N).  P and N6 (P) = P .  C~ (P) (since N is not cyclic, Theorem 0.2 implies 

that r = 1; hence N6(P)=P.C6(P) )  and prove that G has a normal p- 

complement. Since L/Op(G) = K| G/O~(G), No(L) = 
Op,(No(L)).P and G/Oo(G ) has a normal p-complement Qo/Op(G), by 

theorem 12.10 in [3, p. 37], where QoNP = Op(G). If Op(G)<=~(P), then by 

Tate's theorem [8, p. 431] Qo has a normal p-complement, hence G has a normal 

p-complement. Therefore Op(G)~ ~(P). If s~ ~ Op(G) then there exists an 

x E P\PldP(P) s.t. x ~ O~(G). Since Op(G)/xP, P2 < - Op(G) and Zi(Op(G)) = 
Zi(P)  = Pro-, for 1_-<i_- < m - 3 ,  by Proposition 0.2(c). Therefore P, A G for 

3 _-< i _-< m - 1 and in particular Pa A G. P/P3 is of class 2, hence P/P3 is regular. 

Consequently G/P3 has a normal p-complement Q1/P3, Q I N P  = P3, by 

Wielandt's transfer theorem. But then by Tate's theorem Q1 has a normal 

p-complement and hence G has. Therefore s~E Op(G). Since O~(G)AP 
obviously P~<-_Op(G) and I),_I(P,)<=I'I,_I(Op(G)). This implies that 

P/I~,_l(Op (G)) is regular by Theorem 3.4, hence by Wielandt's transfer theorem 

for /5 = P/~,_I(Op(G)), /5 has a normal p-complement Q/f~,_~ and 

(1) Q A P = f~,_l(Op (G)). 

If P = Op(G) then G = N~(P) = P .  C~(P) and G has a normal p-complement. 

Hence we may assume that Op(G)~ P. Now, P~ <-Op(G)<= P~. ~(P), hence 

f~,_~(Op(G))<=f~,_I(P~.~(P)) and by Proposition 3(d), a ,_~(Op(G))= < 

I~,_~(P~). (s~). By Theorem 3.4(d), a,_~(P~)(s ~)_-< @(P). Hence 

(2) 11,_,(O~ (G)) =< (l,(t). 

(1) and (2) imply that Q vIP < (I,(P). Hence Q has a normal p-complement by 

the theorem of Tate. But then G has a normal p-complement, as required. 
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COROLLARY 1. If N is a noncyclic normal p-subgroup of G then Ce(N)= 

c~ (N). 

PROOF. By Proposition 4, C = C 6 ( N ) =  Q, (G) 'Ce(N) ;  Or , (G)chC/ \G  
Q , ( C ) A G .  Hence Or , (G)= 1 and C = Cp(N). 

COROLLARY 2. O r (O) = P , ' ~ ( P ) .  

PROOF. If A = Or(G ) has no characteristic cyclic subgroup (c.c.s.) K #  1 

then we are done by Proposition 2(e). Hence let K be a c.c.s, of A. Then 

K -< Z ( P ) : =  Z. Hence we may assume 

K<-_Z(G). If A / K  has a c.c.s, then 

Theorem 0.3(c). Therefore t = 1 and 

A / K  has no c.c.s. Let e x p ( A / Z ) =  e 

that K is the maximal c.c.s, of A and 

s',,-2=-sm_2modZ and s ,_ l= s,._~ by 

G has a normal p-complement. So 

and f~(Z(13,_I(A/K.)))= H/K. Then 

ffI = H Z / Z  ch .4. If H is cyclic then H _-< Pro-2 and as H is not cyclic, Cp (H) _-< A. 

But then ~ ( P ) .  P1 -< Cp (E~(H)) and A = ~ ( P ) .  P1. Consequently, /d is a noncyc- 

lic elementary abelian subgroup of Ue-1(.4). Therefore by Proposition 2, 

,4 = ~(P)" PdZ  and A = ~ ( P ) .  P~, as required. 

PROPOSITION5. Let A = Op ( G ) and to every X <= G denote f f  = 
X ~ ( A  )/dp(A ). Then (gP) A G. 

PROOF. Let M = ~e_l(A), K = Pp. M is a Kt~-module which has dimension 

at most p over K, by Proposition 3(g). Also by Propositions 3(d) and 3(f) M 
decomposes, as a K/Q-module: 

(1) MK~ = U~ @ U2, where U~ = (gP), U2 = I)~-~(P1). 

M is not a projective Kt~ module, since then U~ and U2 have to be, which is 

clearly impossible as dimK (U~) < p for i = 1, 2. Therefore U~ and U2 have vertex 
/5 and if M is an indecomposable K(~ module, then M also has vertex/5 (see 

[5]). But by Green's transfer theorem in [6] there exists a unique (up to 

isomorphism) indecomposable K/Q module U s.t. U I MK~ (i.e. U is.isomorphic 

to a direct summand of MK~) and U has vertex /5. Consequently M is not 

indecomposable. By (1) if M = M1 @ M2 and U~ I M1r2~ then again by Green's 

transfer theorem U, = MIK~ and (gr) is a 0-invariant subspace of /5, i.e., 

PROOF OF THEOREM 1. Assume first that z = l. Then N~ (P) = P .  C~ (P), by 

Theorem 0.2; f~,_t(O r (G))_-< qb(p), by Theorem 3.4 and Proposition 3(d). Since 

P~ _-< Or(G ), P/~e_z(Or(G)) is regular. Hence by Wielandt's transfer theorem 
for P/f~e_~(Or(G)) and Tate's theorem G has a normal p-complement. (We 

have stated these arguments in detail in Proposition 4.) Therefore assume that 
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r # 1 .  If s ' = - s ~  a E Z  then a # 1 .  Since (sP)' ~ ( sP)  ~ mod qb(A) by 

Proposition 3 ( f ) ( s P ) ~ Z ( G ) .  Hence C ' :=C~(gP)A(~  and I < I G : C ' I  = 

I G : C I --< P - 1. But then, since the theorem is true for C by assumption, C has a 

normal p-complement  and hence G is not a counterexample. This proves 

Theorem 1. 

The following theorems are consequences of Theorem 1. 

THEOREM 2. Let G be a finite group with a Sylow p-subgroup P of type (m, n ), 

p >2.  Assume that m > (n + 5)(/7 - l ) +  1. I f  x, y E P and y = x ~ for g E G then 

there exists an element n ~ N ~ ( P )  s.t. y = x". 

PROOF. By induction on I G : P I = v. For v = l, obvious. Assume v _-> 2 and 

G is a minimal counterexample. 

PROPOSITION 1. (a) I f  N < P, N A G then N <- Z (P) .  

(b) Assume  that N A P, N ~ G and N is not cyclic. I f  x, y E P and there exists 

h E N ~ ( N )  s.t. y = x h then there exists a u E NG(P) s.t. y = x". 

PROOF. (a) Assume that N;~ Z (P) .  Then N is not cyclic hence by Theorem l, 

G = QPT, ( I Q I , p ) =  I, ITQ / Q [ I p -  I. If x, y E P, y = x g f o r a c e r t a i n g E G  

then y - x* rood Q. Since G / Q  ~- PT, x g -- x" mod O for a certain u E P T  and 

x * = x " . q ,  where q E Q .  So q = x  g ' ( x " )  - l = y x - " ~ P ,  hence q E Q f q P = I ,  

i.e. x 8 = x", contradicting our assumption on G. Therefore  N is cyclic and 

N <= Z(P) .  

(b) By Theorem 1, No ( N ) =  Q .  P .  T. Hence by the above argument, but 

now with NG(N)  in place of G, if x ,y  E P, g E N o ( N )  then there exists a 

u E N ~ ( P )  s.t. y = x " .  

PROPOSITION 2. If Z <-Z(P)  and Z is weakly closed in P w.r. to G then 

Z ~ Z ( G ) .  

PROOF. Since Z is weakly closed in P w.r. to G:  

(1) two elements x, y E P are conjugate in G iff they are conjugate in N~ (Z).  

Now Z ch (P) ( Z ( P )  is cyclic) hence No (P) --< N~ (Z). If No (P) # G then by 

the assumption on G:  

(2) two elements x, y E P are conjugate in N o ( Z )  iff they are conjugate in 

No(P) .  

Hence if N6 (P) # G, we are done by (1) and (2). So assume that N~ (Z)  = G. 

If Z ~  Z ( G )  then Co ( Z ) A  G, I G : C o  ( z ) l I p  - 1 and again by the induction 

hypothesis on (3, two elements in P are conjugate in C o ( Z )  iff they are 

conjugate in N G ( P ) A  C o ( Z ) .  Since G = C a ( Z ) T ,  T < - N G ( P ) ,  if x and y are 
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elements of P then x and y are conjugate in G if[ they are conjugate in NG (P), 

contradicting our assumption on G (i.e. G is not a eounterexample). Therefore 

Z <= Z(O). 

PROOF OF THE THEOREM. Denote by J = J(P) the Thompson subgroup of P. 

By Proposition l(a) and Theorem 1, NC.(J)=QPT, ( [ Q I , p ) = l  and Q_-< 

Co. (J). Therefore l l ,  (Z(P))  A No. (J) to every 1 -< i _-< n - 1 and by theorem 14.5 

in [3, p. 42] l'l, (Z)) is weakly closed in P w.r. to G for 1 =< i _-< n - 1. Hence 

fl~(Z) < Z(G) by Proposition 2 and in particular ' - s m-I - s,,-~ for every t E T( _-< 

No, (P)). This implies that Z(P) <= Z(NC. (J)). But then by Theorem 14.10 in [3, p. 

45] 
(3) Z ( P ) : =  Z is weakly closed in P w.r. to G. 

Consequently, by Proposition 2, 

(4) Z = Z(P)<=Z(G). 
Now, denote .~ = X Z / Z  for X = G. Let JdZ = J(P). J~/x P and by Theorem 

1 and Proposition 1, Nc.(J,) = Q,PT. Hence Nb(J1)=Q~PT ( 1 0 1 1 , p ) = l  

and ~3,(Z,_(P)).Z/ZANG(J,). Therefore by theorem 14.5 in [3, p. 42] 

U, (Z2(P))Z/Z is weakly closed in P/Z w.r. to G/Z. Since Z(P) is weakly closed 

in P by (3) and ~3, (Z2(P))Z/Z is weakly closed in P/Z, I'~,(Zz(P))" Z = Ho is 

weakly closed in P. Moreover, since Ho/Z and Z are strongly closed in P/Z  and 

P w.r. to G/Z  and G respectively, Ho is strongly closed in P w.r. to G. (Note 
that H,/Z and Z are cyclic.) Now Ho is an abelian subgroup of P which is 

strongly closed in P w.r. to G. Hence by theorem 6.1 in Glauberman [2], i fx  and 

y are elements of P and y = x" for a g E G then they are conjugate in No(Ho). 
But H,, is not cyclic. Hence by Proposition 1, if x, y E P are conjugate in No. (H0), 

they are conjugate in N~ (P). Consequently, if x, y • P are conjugate in G, they 

are already conjugate in NG (P), contradiction. Hence there is no counterexam- 

pie to Theorem 2. 

The following two theorems are trivial consequences of Theorems 1 and 2. 

THEOREM 3. Let G be a finite group, P a Sylow p subgroup as in Theorem 2. 
Denote N = NC.(P). Then G/OP(G) = N/OP(N). 

PROOF. By Theorem 1, N =  QPT ( I Q I , p ) = l  and 
N'= [QPT, QPT] = QoP'[P, T], Qo <= Q and 

(1) P n N ' =  P'[P, r]. 

Q <= Co (P). Hence 

By theorem 3.4 in [4, p. 250] 
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P O G ' = ( x - l Y  lY =xS, x,Y ~ P , g  E G)  

= (x-lY lY = x " , x , y  ~ P , u  E N )  

= (Ix, u ] I x ~ P, u E N)  = [P, N] = [P, OPT] = P'[P, T]. 

(2) P n G ' =  P'[P, T]. 

(1) and (2) imply that P n G ' =  P n N ' ,  hence by Tate ' s  theorem G / O P ( G ) ~  

N / O ~ ( N ) .  

REMARK. If P is a p -g roup  of type (m, n) and m _-> p + 2 then P may have 

many sections isomorphic to Zp wrZp and may have homomorphic  images of this 

type. Hence  Theorem 3 cannot be derived from known theorems (such as 

Wielandt 's  [12] or  Yoshida 's  [13]). 

The following theorem describes the structure of p-local subgroups of G. 

THEOREM 4. Let G and P be as in Theorem 1. I f  H <= D <= P and H A P but 

H ~ Z ( P )  then N = N ~ ( D )  = QBTo where Q = Op,(N), QB = Op, p(N), B is a 

Sylow p.subgroup of N and To <= T. 

PROOF. H A P, H -< D ::), H A D. By Theorems 1 and 2, H is weakly closed 

in P w.r. to G (in fact H is strongly closed in P),  hence is weakly closed in B w.r. 

to N. Therefore  H 8 = H for every g E N, i.e., H A N. But then N = N~ (H)  = 

C)oPT and N has the required form. 
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