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ON FINITE GROUPS WITH
A SYLOW p-SUBGROUP OF TYPE (m, n)

BY
ARYE JUHASZ

ABSTRACT

A finite p-group P is of type (m, n) if P has nilpotency class m — 1, P/P’ =
Z,» X Z,» and all the lower central factors K, (P)/K,, (P) are cyclic of order p".
Our main result on finite groups with a Sylow p-subgroup of type (m, n) is
(Theorem 4.1): Let G be a finite group with a Sylow p-subgroup P of type (m, n),
nz2pz3, mz(n+5)(p—1)+1 For H= Gdenote H=HO,(G)/O,(G). If
O,(G) is not cyclic and P, # 1, then P A G and G = P - T is a semidirect product
of P and T, where T is cyclic of order 1, t l p — 1. Here P, is the subgroup defined in
section 0. This theorem easily yields that under its assumptions
Ns(P)/O?(Ng (P))= G/O*(G), it gives information on the conjugacy pattern
of p-elements of G and gives information on the structure of p-local subgroups
of G (Theorems 4.2, 4.3 and 4.4).

Introduction

This work consists of two parts: Part A (sections 0-3) contains the relevant
results on p-groups of type (m, n), while Part B (section 4) contains the proof of
the main theorems. In section 0 we collect the necessary elementary results on
the structure of p-groups of type (m,n). Section 1 contains the collection
formula for p-groups of type (m, n), which is basic for all the work. Let P be a
p-group of type (m, n). Since, for2=i=m — 1, K; (P)/K...(P) is cyclic of order
p", there are elements s, € K, (P) such that K, (P) = (Ki..(P), s;). In section 2 we
compute the exact order of these s; (Theorem 2.6), by introducing the concept of
an “‘admissible word” and studying the set of all such words in P (Theorems 2.1
and 2.2).

In section 3 we derive some results on the power-structure of P and in
particular we show that certain subgroups and homomorphic images of P are
regular in the sense of P. Hall (Theorem 3.4). This result is crucial in the proof of
the main theorems. In order to achieve it we correspond to every p-group P of
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type (m, n) a Lie-algebra which depends on the ““fine structure” of P (Theorem
3.2). This algebra differs in general from the usual one, but is similar in principle
to that constructed by R. Shepherd in [12]. By this algebra we get some
limitations on the p-degree of commutativity of P (Theorem 3.3), a concept
which generalizes the notion of “degree of commutativity” introduced by N.
Blackburn in [1], which lead by the aid of results of the previous sections to the
desired result.

The main result of section 4 is Theorem 4.1. Two difficulties arise in its proof:
the location of O,(G) in a Sylow p-subgroup P of G and finding a maximal
subgroup N of O,(G) which is normal in G. Here G is a minimal counterexam-
ple to Theorem 4.1. The location of O,(G) is the subject of the first three
propositions, which still deal with p-groups. In Proposition 4 we show that
Co (H) = Cp(P) for every noncyclic p-subgroup H of G, while in Proposition 5
we show that the desired subgroup N exists, by Green’s transfer theorem [6].
This finishes the proof of Theorem 4.1 immediately. Theorems 4.2, 4.3 and 4.4
follow from Theorem 4.1 by standard considerations.

PART A
0. Notation and basic properties of finite p-groups of type (m, n)

G is a finite group, P a Sylow p-subgroup of G (or just a p-group). A =G
means that A is a subgroup of G. KA P)=[P,P] and for i=3 K,(P)=
[Ki_i(P), P]. Define P, by P,/P,= Cp/p(P./P,) and for i =2 let P. = K;(P).
Denote by Z; = Z,(P), 0= i (Z,=1) the upper central series of P. Forn =1 a
finite p-group of type (m, n) is a p-group of maximal class. The following results
follow easily from this fact and the results of Blackburn [1] on p-groups of
maximal class.

ProrosiTioN 1. Let P be a p-group of type (m,n). Then
(@ Z=P,.forl=i=m-2,
(b) P/P, is cyclic of order p™.

Let us denote by P}, 0 = j < n, the subgroup of P, which contains P,., and has
index p’ in P, P.,,<PI=P.

DerINITION.  Let k € N, k/a = ko+r/n, r <n and let P be a p-group of type
(m, n). P has degree of commutativity k /n if [P, P,] =< Pi.;.. foreveryi,j = 1. If
k >0 then P has a positive degree of commutativity.

From now on P denotes a p-group of type (m,n).
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ProrosiTiON 2. Assume that P/P,_, has positive degree of commutativity.
Then:

(@) There exists an element s € P\P, such that s& Cp(P,_,/P.,_)) and
SE CP(PZ/P;)-

(®) If Pi=(Pss)), s as in (a) and for 2Si=m—1, 5 =[s_1,5], then
P = <Pi+1, si)-

(c) For every s € P\P,-®(P), Co(s)NP,=P,_..

(d) For every s € P\P,-®(P), s* ={s* Ig EP}=s5-P,

(e) For every s€ P\P,-®(P), s*" EP,_,.

ProposITION 3. Assume that P|P,._, has degree of commutativity k /n, 0 <
k=n mz=5.

(@) If m is odd then P has degree of commutativity k /n.

(b) If mis even then P has degree of commutativity k /n iff Py,,_,/P%, is abelian.

(c) If Py/P;,_, is abelian then P has degree of commutativity k /n.

LemMma 1. Let s€ P\P,-®(P) and H = (s, P,). Then
(@) H is a p-group of type (m —1,n).
(b) I'I, = K.(H):' .P,'.H, i = 1

THEOREM 1. Let P be a p-group of type (m,n). If m is odd and 5=m =
2p + 1 then P has degree of commutativity k /n = 1/2.

THEOREM 2. Let P be a p-group of type (m,n). If m = p + 2 then P has degree
of commutativity > 0.

The result of Theorem 1 is best possible.

LemMa 2. Let Pbe ap-group of type (m,n). If m = p + 1 then exp(P/P,._,) =
exp(P2)=p".

Finally we need the following result on Aut(P), the group of automorphisms
of P.

THEOREM 3. [9] Let P be a p-group of type (m,n), m =4, A = Aut(P), Ba
Sylow p-subgroup of A. Then

(a) B A A and A is a splitting extension of B by an abelian subgroup Q which is
isomorphic to a subgroup of Z,_\XZ,_,.

(b) To every q € Q there exists an element s € P\ P, such that P = (s, s,) and
si=simodP,, s=s5"modP;, a,b#o(p), 0<a, b<p" and a*'=p""'=
1 modp.

() For 1=si=m-1, s?=5"""mod P,.,.
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(d) If Pi#1 then Q is cyclic of order ¢, t ,p —1 and b=a"modp" for some
reZz.

CoroLLARY. If G is a finite group with a Sylow p-subgroup of type (m, n) and
Pi#1 then N (P)/P - Cs(P) is cyclic of order 1, t ,p -1

Finally, in Section z recall Theorem x of Section y by Theorem y.x if y# z
and by Theorem x if y = z.

1. The collection formula for p-groups of type (m,n)

By the collection formula [8] if F is the free group generated by x and y and
€ Z the " "
" e 8 then (). 0.

(x-yy =xr -y e’
where ¢ € Ki((x,y)), ¢ =[y,x,x, -, x]%w[y,z,,- -+, z-1) mod Ki.({x,y)), z. €
{x,y},

. cp,‘,

i—-1
7T[y,Zl’ T Zl'—llé[)g x’ x7 o "x]mOdKi'H((x’ y))'
i—1

For n=1, @, = ¢)» =1modp ([8]). Our aim is to generalize this result for
n = 2. For this purpose we fine a finite group P s.t. P is a homomorphic image of
F and the result is true in P. It turns out that a metabelian p-group of type (m, n)
is suitable for this aim. Hence we shall construct such a group.

ProposiTion 0. [11] Let P be a metabelian p-group of type (m,n), P = (s, s,)
and for i 22, s; = [8;_1,5]. Then

(1) [S s ] = s<i>i (,) Ij li:[ Sz, (,, — l)Sl, (,u - l)s]C)(’i)

where [sy, (v — 1)s;, (u — 1)s] =[s2, 51, *, $1, 8, + *, s].

v—1 p=1
@) [st, s]—sk(i)i sk(l) s k=2
3) [sk, s1] = H [ S, Vsl]( )

ProposITION 1. Let P be a metabelian p-group of type (m,n). Then
(4) Fori=2

"ﬁl (i?"1> 1 and pln_[l s(l':fnl)e Z(P): KoPy).

t=0
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If P is embedded in a p-group of type (m + 1, n) then

= (7
(4') I:L sl’+l € KZ(PI)-
Proor. Let H;,={s, P;). Then by Lemma 0.1, H; is a p-group of type
(m —i+1,n). Since for i =2, P, is abelian,
p" p"
(ss:)" = S""sf’"S.(fl) aE sg'ip}.l.
By 0.2(e), s*", (ss;)"" € Z(P) and by 0.2(d) for H,, (ss;)"" and s”" are conjugate in
P. But two elements in the center are conjugate iff they are equal. Hence
(ss:)”" = s*". This proves the first part of (4) and (4'). Similarly, expanding
(ss:)’” mod K,(P,) we obtain the second part of (4).

ProposiTION 2. Let P be a metabelian p-group of type (m,n) and let x € P,,
i=z2 Then

(a) For every integer k, x*" = 5.2, 1 -8\, 20" S, where for every j,
PEj=m~-1,0=q <p" andp"",a,forp’§j<p’“, l=r=sn-1.

(b) Let x =s;"--s;,+sm3, 0=a; <p". If x has another representation
x=stosP o st where B, ", Bm-1 are integers such that p"’ ,B, for
p=sj<p,0=sr=n-1, thenp"",a,forp§j<p'“, 0sr=n-1.

Proor. We may assume that m = p +2, in view of Lemma 0.2. Say that the
depth I(x) of x (in (b)) is u if a,#0 but a,_, =0 for every t >0. We prove
Proposition 2 by induction on I(x). By Lemma 0.2 the proposition holds for
I(x)=p—1. Let y=s;2---s,7. Then x =s5.'y and as P, is abelian, x*" =

o kpr  kpn
RO al) ) ()

s
i — Ji+l Tt St T S m
()
So we compute s,/ Let
- ak (pt>=k,p"+r,, where 0=r. <p".
Then p"~* fr, for pc=t<p*, 0=c=n-1, and
—a1k<p") kpn r,
Sip-N /= slfl-l *Site-1-
By the induction hypothesis (a)

kpn a(1) altm)
Sitt—1 = Site4p-2"" " Sttrep-3+p’ "

where 0= a(t,n)<p" and p""’la(t,p,) for p’—p+l=u<p™-p+1, 1=
r = n. Therefore
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—a P" r, a(e1
(*) s|+rf|( ! )= silﬂ—l * sz+(r+)p—2' - sfil*)-p 3+ "%
where 0=r, a(t,p)<p" and p""’la(t,,u) for p'—p+1=u<p™'-p+1,
1=sr=nandp"“|rforp°=t<p™,1=c=n-1
This yields, by (4), that s; = sﬁ‘,,_l--'sﬁf,,—uq' -+, where A,=
Siep-qalt,p)+ Tp-2sq But then by () p"™’ IAq forp'—p+1=sq<p™'-p+1

Hence, as l(s, Y < (x), s = s.i‘,,_, e s?;',,_zﬂ,- --, where p"™" lB,, for
p'-p+1=q<p™'-p+1and 0=B,<p", by the induction hypothesis (b).
Also, y® =50 5 50 au-, where 0=c¢,<p" and p"”|C. for
p'-p+1=h<p™, by the induction hypothesis (b). Hence =
Sidpor e si,,_czﬂ‘, -+, where p"™’ ]Bq +C,, for p—p+1=q<p™'-p+1

(Co=0) and part (a) follows from this by the induction hypothesis (b).
We prove (b). Let B; = kp" + h;, where 0= h; <p" and p"™’ lh,- forp'=j<
p*,0=r=n-1 Then x = (s Py TR Y By part (a)

CATERY Jie) G W SR Je it

where p""lu,- for p'=j<p™, 1=r=n-1 and 0=y <p" Hence x =
"l

h
$:'c 855 z, where

m—i+p

+h
I I YorrF Ppae
zZ= s|+p i+ -

Since I(z)<I(x), z = I"g'*? 5.2, where 0= v,.,<p" and p"~’ l v, for p’ =
j <p", by the hypothesis (b) of the proposition. Consequently x has the desired
representation.

The proof of the following lemma is elementary and straightforward, hence we
omit it.

Lemma 1. Let myn o, €Z, m=3, n=2, 0=qa, §=p"—1. Then there
exists a unique p-group P of type (m,n) with Pi=1, s.t. P =(s,s1), for every i
2=i=m~1, s =[s-1,5), (s8)" = s, and s7" = s,

We come now to the main result of this section:
THEOREM 1. Let F be the free group generated by x and y and let
p" p"
(*) (xy)""=xp"yp"c(22)...L(">..-cp",

¢ €EK (F):=K, by the collection formula, G =
[)', (i - l)x]"fﬂ'[y, 2y, Zi—l] mod K.,

[y, 21, zica] 2y, (i = Dx]mod Kiy, 2, € {x, y}.
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Then a, (&) =(CE)+r-p"~""'modp", for some integer r.

Proor. By Lemma 1, to every i, 1 =i = n there exists a p-group P of type
(p' + 1, n) with abelian P, such that
>
2

(ss,)" = s?"s¥7s " Spn.

Let 1> N— F-5P—1 be a presentation of P, x" =5, y” = 5,. Obviously we
have

K, (Fy =K, (P)= P,
) {

([y, G = Dx]*) =[50, (i — 1)s]* = s

Hence there exist elements d, =c/€ P,, d; = s{'u;,, u; € P,,; s.t.
o

(ss.)" = s*" ~s‘.’"-d(22>- <o dyn.

()

On the other hand

(58" = sP" - s8"s;" " - e sy,
Hence (,,"> (p")
2 2
$3° 7 spn=dy e dye,

Since P is a p-group of type (p'+1,n)

0.4

() () (*) sgpz ) sy

-

By Proposition 2(a)
( ")_ " ( ")
< v ) k, TR s,
s /=887 R PO d'’ S S8y,

n-r+1

where 0=pu =p'—1t,p |e and p"~*'|e, for 2=t=p‘~1. Hence

(pn) }p") (P") <pn)
2 p'—1 a a e 2 p'~1 b.
d2 R 7 MO =s22-..s’/...s s> e 2

ot Sp1 =S, "'Sf""s:,-‘,
where 0=gq, b <p" for 2=j=p'-1, e=Z¢,=0modp"™"' and ¢ =
Ze,=0mod p"*' (see Proposition 2). Therefore, considering the exponents of
s, in the left-hand side and the right-hand side of (*)(*)(*), we find that

PY\ = p” "
e+<,.)=£+ -(,.>mod .
p @p p p
Consequently,

ap' (f’l> = (5.) + rp n-i+t mOd p‘u for some integer .

as required.
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COROLLARY 1. @, =1modp.

COROLLARY 2. In the expansion of (xy)**", (k,p)=1 by the collection
formula a, =k mod p.

These corollaries follows by the facts:
l‘ and kp‘p )Ekp"‘i mod p".

2. The order of s,

In this section we assume that P is a p-group of type (m, n) and notations are
as in the previous sections.

Let x =s; 51+ s,3, 0= a, = p". We say that x is an admissible word
(a.w.)if, forevery i, p" =i=p*"'—1,p"° ’ai. We say that the depth I(x) of x
is i if a;# 0 but for every t >0, a,_, = 0.

Denote by A the set of all the admissible words of P.

1

THEOREM 1. Letx =si'sy’---soiandy =sy' - -sori, 0 a, B =p", be
two admissible words. Then

(@) x-y€EA.

(b) For every u € P, [x,u] € A.

) Ifz=s"-smi, p°=i<p*' thenz” €A forr=zn—-a, (a,p)=1.

(In other words A is a normal — in fact characteristic — subgroup of P which
contains Q,(P,) for i and r as in (c).)

Proor. Let I(x)=i, I(y)=j. Suppose that we have proved the theorem for
aw.s x and y with j =i If u and v are a.w.s. I(u)=1i, I(v)=}, and j <i then
u-visanaw.:u-v=vo-u-[uv]. Now, by (a) v - u is an a.w. and by (b) [y, v]
is an a.w. and I({u, v]) > i. Hence by (a) uv = v - u[u, v] € A. Therefore, without
loss of generality, we may assume that I(y)= I(x).

Assume that the theorem is true for a.w.s with depth i + 1 and prove it is true
for i. First we prove (a). suppose y = s}, j =i (y € A).

CLAaM. x -s]EA.

b a o a b a, o b a o
PROOF. x -5; = §;'s:iV - 5.7+ s ---s,,. i ST s o, We may as-
b . . P
sume m—1-j>j=i s,mj}-s;=s, Jso il [l ,‘,sb] Since i<m —1-j, it
follows from the induction hypothesis (b) that [s,~ 1'_‘,‘,sb]EA and hence
—r—1 —-1

St [some l,bf]eA, by (a). By a similar application of the identity {9 =
né[é, n] m —2j —1 times, we obtain
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@ H’ ,+1 b, _,

b o a,
xslzsl.'s‘,'ﬂ'...sll SSi s

a +b b, b . . .
and the subword s;’ "-s,i -+ s, is an a.w. But then x - s} is an a.w. by its
definition. This proves our Claim.

s 8 B,
Let j=i andlet y=s,"---5,"7. Then

x-y=(s;-- )(s'- g

«+B 5 ., B

— * ﬂ{l—l
= (s st s s s ) s s

and by our Claim the word SRR Y 3 B’sff,'--‘s,a,.”]’ is admissible. Hence,
again by our Claim, (s;"- - - sor3) - s+ s is an a.w. If we apply the last Claim
m—1-j times we obtam that x-y is an aw. To prove (b) we denote
Xive = Sisv' - 5.7 for t =2 1. Then to every u € P,

[x,u] = [ u) " [sii,ul™2 - [si, u] ™[50, ul.
Now, for t = 1, [si., #] is an a.w. by the induction hyp(b). Hence
[Sico ulerer = [ien U] [Sivn, U, Xiveni]

is an a.w. by (a) and (b). Therefore, by (a)

(*) H [si, u]™ " is an a.w.

and it remains only to show that [s;", u]**" is an a.w. For this it suffices to show
that [s;",u] is an a.w. We may assume i <p" and p"™* la.—. By the collection

o d) ki)

[s5 ul = s.%(s) = s.%(si)" = (51 s3)™
Where k‘ (S K,‘ ((s,‘, [S.~, u])) = P(,'+1)+,'(,'_1) = ro, jo = l 'j + 1. We prOVe that k,‘ ]' and

formula

= [s; u]

@,

[s, u]™ are a.w. by using (c). To apply (c) to k,(f.) we have to show that if
(?) =p° (bp)=1 and p°=j,<p°"

then q=n—¢ If j=p"d, (d,p)=1, then i-p"d = ij <j,. Hence, if p* =i <
p=*' then p**"'=jo,<p**™*' and we have to show g=Zn—(a+h). Let a; =
a-'p,(ap)=1 Then q=r—h But n—a =r, by the definition ¢f an aw.,

hence n—a—-h=r—h=gq and we may apply (c). Therefore II;-,k}'/ is
admissible by (a) and (c). We show that [s;, u]* is admissible. Since [s,, u] € P;.,,
obviously [s, u]* is an a.w., by applying (c) to z = [s, u] with I(z)=m —i—1.
This shows that [s7, u] is an a.w. and by (a) and (*) [x, u] is.
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Finally we prove (c). Let z = s]'u, u =52t --so. lf b=a-p", (a,p)=1,
then by the collection formula

b= (s]u) = s:-"k@ . -k,(?) v ks,

k; € K;((s:", u)) = Pig_1yris1 = Py, jo=ij + 1. Just as in the proof of (b) we find
b

that kV\/ is admissible. Since u € Gi,,, u® is admissible by (c) and since
r=n-—a,(s;)" is admissible. Hence z* is an a.w. by (a). Q.E.D.

REMARK. Let x =s;'---s,"7. We say that x is admissible of rank r, if
p~*|a; for p* =i <p**' and we say that x = s;*---s."7' is admissible of
rank r with respect to j if x is admissible of rank r in the subgroup H; = (G, s).
By using the same arguments as in the proof of the previous theorem we may

prove:

a, a, B, B B,
THEOREM 2. Letx =s,'s5* s, y=8:'s2° 5.3, 0= a, B..

(a) If x is admissible of rank r and y is admissible of rank rw.r. to j, j = 2, then
xy is admissible of rank r and xy = s;'--- 5,3}, es=a;mod p™™** for p* =i <
pa+l.

(b) If x is admissible of rank r then for every u, [x, u] is admissible of rank r w.r.
to 2.

(c) If x is admissible of rank r then x*° is admissible of rank r+ a and if
XP =sP .- sy then B = p°a, mod p" """ for pe=i<pet.

(d) If x and y are admissible of rank r then x -y is.

(e) If x is admissible of rank r then to every u € P, [x,u] is.

() If z=s"--s»} and pe=i<p* and tzn—a+r—1 then z*' is
admissible of rank r, (a,p) = 1.

The next theorem shows that a formula analogous to (4) holds for a
nonmetabelian p-group of type (m, n).

THEOREM 3. Let P be a p-group of type (m, n) and let k be a natural number,
(k,p)=1. Then there exist natural numbers e} such that

s sits P =1, € e Z(P)
and fori =2
St S Uy U € Py,
The e]'s satisfy:

*) prleiforp==j<p= and p |eforj=p~
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If P is embedded in a p-group of type (m +1,n) then fori =1, u; € Pyn,,.

Proor. It follows from the collection formula and 0.2(e) that
kp kp
sy ? '-'c,(‘ sz =1, ¢EP, z€Z(P).
) o {0
By Theorem 1 ¢} i / are admissible words, hence s," -¢3* /- ¢}
is. Therefore there exist numbers e, 0 =¢; =p" s.t.

gkp") (kpn)
kpn n kpn e
sl . C 2 .. CPE 2 . e

en
=851 *°$: 'spp"u(),

Uo€ P,»,, and for p* =j<p**!, p» ,e,-. It remains to show that p"™ ” e; for
j =p~ The exponent of s, in c,= is

k __(kpp >+rpn a+lmodpn,

kp
by Theorem 1.1. We prove that the contribution of I1?2; " ¢; ( i ) to the exponent of
s,- is divisible by p*™**'. Let ¢; = s;'* - - s.~3'. Denote

(-

Then, by the collection formula, (

Theorem 1(c) and Hd t
kp"

) = "‘("s )---sf,’,"_'l‘(pin)mod A(P).

If p?=t<p®"' then §“+B<t1+1 Hence as p “‘“*”’l(’) d € A(P;) by
A(P,) by Theorem 1(a). Therefore

Now,if x = s;' -+ som7, y = 541 - - st are elements of A(P,) then as [s", 5| €
A(P3) by Theorem 2(b),

+8 o, _+B, _
x-y=si o5y " mod A(P,).
Hence

Pt (kp) 8. 8 n—a+l
Il '/ =555, mod A(P), p |8,-, i=j
i=2

and by Theorem 2(a)

I1 c.(‘ ) =5 5smod Py,  where g,« =k, modp" "

i=2
Hence the e} satisfy the required conditions. If P is embedded in a p-group of
type (m + 1, n) then by Proposition 0.2 (ss,)**" = s**". Hence the results follow
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by the case i = 1 and by Lemma 0.1 considering the subgroups H; = (P, s),i = 2.
The following two theorems refine Theorem 3. Theorem 5 gives a formula for

pn—l+l

53

THEOREM 4. Let P be a p-group of type (m, n). Then forevery k, (k,p) =1,

m—p—1

s77= T[] s, modZ(P)-P,.,»
n=0

and fori = 2, orif Pis embedded in a p-group of type (m + 1, n) P, then fori = 1,
m—p—i

kp"___ b .
5, = H 545 1. mod Piypn.
n=0

The b,’s satisfy

p ™ |bus  forp*—-p=p=p -p-1,
(*)(*)

p |l b. foru =p=—p.

Proor. By Theorem 3, s,” = sy’ss- - su where p" |e, for 2=i=p -1,
the ¢;’s satisfy (*) for j = p, and u € P,~,, if P isembedded in Py, u € P, Z(P) if
P is not embedded in P,. Hence, by Theorem 1(c)

kpn e n
sy =57+ 5u mod A(P,)

and by Theorem 2(a) s," = s+ s~u, where &, =e;, mod p"™**' for p* =i <
p*'. This proves the theorem for i = 1. For i =2 we consider the subgroups
H, ={(P,s) and apply Lemma 0.1 to the result for i = 1.

THEOREM 5. Let P be a p-group of type (m,n). Then
(1) To every k with (k,p)=1 and to every t =1,

kpn—1+1 a, a, an_,
S, = S1s1p-1) " " S1kep-nrp "t Stdep-1y+pn-p” U1,

where-ul (S P1+,(p_1)+‘,n-p+1 . Z(P).
(2) If Pisembedded in a p-group P, of type (m + 1, n) then for every i = 1 and
every t =1

kpn—1+t a, a, an_,
S = Sivtp-1)" " " Sitep-Dru " " Sitp-1)+pn-p " Ui where u, € Pi+t(p—l)+p"—p+l-

The q;’s in (1) and (2) satisfy
p = la. forp*-p=p<p='-p,

n-o

plla. forp=p=—p.
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PROOF. CLAM 1. Let x =s,---s,%v, v € Py-.y, be an admissible word, i.e.
x € A(P)). Then x? € A(P,).

Proor. Induction on I(x). x = sfu, u € P,.,, p™™" l a (a = a,)and u € A(P)).
By the collection formula

()
xP = (siu) = su’cy”’ - “ Cp, ¢ €K ((s;,u)).

Now, 5,°€ A(P,) by definition and u” € A(P,) by hypothesis. We show that
14

a'/ €A(P,).
u€AP) > . € A(P)NP,,, by Theorem 1(b). Hence, for 2=t= p—1,

14
¢’/ € A(P,). Finally ¢, € P, by Theorem 2(b). Therefore by Theorem 1(a)
x? € A(P,).

Ciamm 2. If x,u € A(P,) then [x,u] € A(P,.,).

Proor. Induction on I(x). Let x = s{v, p ]a, VE P, [xu)=[s7vu]=
[s7,u]-[s7-u, v][v,u]. By the induction hypothesis [v,u] € A(P,.,) and if we
show that [sf, u] € A(P,..) then [x, u] € A(P,..), by Theorem 1. By the collection
formula

14
[st,u]=Is, u]"cz(z) C i Coy ¢ EK (s, u],u)) = Pigrryer.

By Theorem 1 [s,u]€ A(P;) and by assumption u € A(P,). Hence by the

induction hypothesis
d

c,'> €A(P,.;) fort=2
and by Theorem 1

I1 c,(:i) € A(P,..).

Since [s, u] € A(P;) by Theorem 2(b), [s;, u]* € A(P,.,) by Claim 1 and [x, u] €
A(P,.,) by Theorem 1.

We prove Theorem 5 by induction on . As we have seen in the proofs of the
previous theorems, we may assume i =1 and P is embedded in P, By
assumption

kpn~1+i1+1 kpn—i+ a an_
S, = (Sl )p = (sl-?-t(p—l) v 515¢(£~1)+p"—pux)p-
By the collection formula
2
a an_ %P pan_ P (2)
(8121 " * ST vyrprop U = Sttip-1)" " * Sterpoiyipn-p U1 €3 Tt Cpy

¢ €EK; ((8f2.(p-1> s s;‘ﬁ—’:z:—l)+p"—p7 us)).
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Hence by the last Claim
kpn—l+l+l _ agp p-an. p
$1 = Sitip-1" " " Sierlpnyrpn—pl 1 mod A(P2+(l+l)(p—l))'
. a .
Since for w =1, Uy, $1%p-1+n € A(Parip-n), by Claim 1,

14 pa
Ui, $14ip-nw € AP 2rgrixp-n)-

kpn—1+1+1

a . —
Hence s, =5,%p-1ymod A(P2.q+1xp-n)- By assumption p” 1” a,. Hence
p" l aop and by Theorem 4
kpr—1+i+1 _ bO b“
S = S1++10p+D) " " " Ss+e+1Xp-1)+p

ban_
T S]'l(:il)(p-l)+p"—pm0d A(P2+(l+l)(p—l)) ' P2+(l+l)(p—1)+p"—p,

where the b, ’s satisfy () (*). Therefore our theorem follows from Theorem 2(a).
The following theorem is the main result of this section.

THEOREM 6. Let P be a p-goup of type (m,n) and let m =(p —1)q +r,
O0=r=p-2 Foreveryi, 1=si=sm-1leti=q(p-1)+r,0=rn=p-2 and
define 8(i)=1 if n<r, 8(i)=0 if n=r. Denote l,(p°)=e. Then l|s|=
qg—q+n—-1+8(i) fori =1if Pisembedded in a p-group P, of type (m +1,n)
and for i =2 if P is not embedded in P,.

Proor. By induction on cl(P). If cI(P)=p — 1 then |s;| = p” by Lemma 0.2.
For i<p—-1q=q=0, §(i)=1 and for i=p—-1, g=¢ =1 and §(i)=0,
hence in any case the theorem is true. Assume we have proved the theorem for
groups of type (m — 1, n). We prove it for groups of type (m, n). Assume first
rz2. Then l+q(p-1)=1+m-r=m-1 and 1+q(p—-1)=Zm—p+3.
Therefore P,._1 = Piigp-1y = Prn_pez- By Theorem 5

proiva o b,
1 = S14q-n " " Sr-ivae-1)
p" | bs, p"'|bi for i = 1. Hence, by Lemma 0.2 s  is of order p and
|si| = p"*%. By the notations of the theorem r,=1, §(1)=1,¢;,=0and n +q =
q —q:+n -1+ 8(1), as required.
If r =1 then by Theorem 5:

prol+1-l by L b,y f =1

St = S1+g-1p-1" " " Sqe-1 orr=1,
pn-l+q-1 b b _

A = s;i(q_l)(,,,l) e sq”(,,il)_, for r =0.

Since p"~|| bo and p"!| b; for j =1, [s,| = p"**%, by Lemma 0.2.
Now, r,=1, rz1, 8(1)=0 and ¢,=0. Hence g—¢,+8()+n—-1=
g + n — 1. This proves the theorem for i = 1. Define H; = (P, s)fori =2. H, isa
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p-group of type (m’,n), m’=m—i+1. Let m'=q'(p—-1)+r,0=r'sp-2.
Then m'=m+i+l1=q(p-D+r—-q@p-1)-r+1l=@—-q)p—-1D+@-r)
+1.Henceif 0=r—-r+1=p-2thenr'=r—-r.+1, q¢'=q—q. Suppose 0=
r—rn+1=p-2. Then by induction Ip(|s;|])=n—1+q—q’+8'(i), where
8'(i)=1forr'>1and §'(i)=0forr' =1,i.e. §'(i)= 1forr. <rand §'(i) = 0 for
r. = r. Therefore 8'(i)=6(i) and Ip(|si|)=n-1+q—q+8@). lfr—-r+12
p—1lthenr—r+1=p—1andthisispossible onlyifr =p—2,r, =0, r'=0and
m’'=(q'+1)(p —1). By induction Ip(|si|)=n—-1+q—q'+ 1+ 8'(i). We show
that 1+ 6'(i) = 8(i). Since r'= 0, 8'(i)=0,andasr,=0and r=p -2, 8(i)= 1.
Hence 1+8'(i)=6(i). Finally, assume r-r+1<0. Then r'=
@P-D+(r—r+1), m=(q'-1)(p—1)+r and by the induction hypothesis
Ip(|s])=n—-14+q—-q,—1+8'(i), where 8'(i)=1 for r'>1 and 8'(i)=0 for
r'=1. We show that §'(i)-1=8(). 8'(i)=1or>1op-1+@F—-r)+1>
1&r-rn+p-1>09r-rn+1+(p-2)>0.Since0=sr,n=p-2,—-p+2=
r-—r=0and —p+3=r-r+1.Hencer—ri+1+p-2z1>0and §'(i)=1.
Now, 8(i)=1forr,<r and §(i)=0forr, =r. Since r —r, +1<0, §(i)=0 and
8(i)=68'(i)— 1. This proves Theorem 6.

The following theorem, which essentially is a consequence of Theorem 5, has a
different nature than the previous ones. It shows that for large i, U, (P;) and the
subgroups of admissible words of high rank coincide and they are regular.

THEOREM 7. Let P be a p-group of type (m,n), exp(P,)=p*, e Zn. Let
m=(p-1)g+r, 0=r=p-2 and §(1) as in Theorem 6. Denote u=
m-plp-D+é()(p—-1)—-r if e~-p—~n+1=0 and let u=p-1 |if
e—p—n+1<0. Alsodenote K =U._,(P))ife—p—-n+1z0andK = U.(P))
if e—p—n+1<0. Finally, for t =0 define

Hio={xEP..|x=siswp'|a}
Then

(a) K=H,...

() |[K/U(K)|=p™"

(c) K is regular.

dIfl=si=pande—-iznthen U, (P)SU..i(P) Uecica (Pu-s)

(e) If 1si=pande—i—n=nthen U..,(P)=0U..(P).

Proor. (a)First assume e — p —n + 1= 0. We show that H,., = (.-, (P)). By
Theorem 5

p“P__ a -1
st =8 1%e-pnsiip-pMOd Prce—pnip-ry  Where p"f| ao

and by Theorem 6
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l+(e-p—-n+D)pEp-)=1+@+(n-D+8)-p-(n—-1)(p-1)
=m-pp-D+GVDPE-1)-r)+1=u+1.

Now, it follows from the definitions of §(1) and r that §(1)(p —1)—r + 1= 0 and
m—-p(p-1)=1+(e—p-n+1)(p—1)=u+1. Therefore s{ € H,., for i =
1, by Theorem 5. We claim that

= (sp‘ e

1<l<m_l) u+l

a-pn-1

For this we show s2%;'€ L for j = 1. By Theorem 5 s57(_,= 53", (a,p) = 1.
Therefore s%_; € L. Suppose that 5% 1EL for 1=t=i-1 We prove that

st €L (i=m—u—1).ByTheorem 5 s% = 5.0 ;- 5., p" " ae, p la,~,
i >0. Hence by Theorem 1

pep %4 % L} 8, By _ 2 -
Sm—i—u" Sm— z+1 sm—i'sm—i+1'sm—i+2."sm—l_sm—i'sm—i+2"'sm—1,

where p”~'| .. This way we obtain an element y = s/, -+ 512, p" | v s.t.
s':::+u-y = s . Therefore s.>.,€ L and H,,,=L =U..,(P). To show that
H,..=0U._,(P) it is enough to show that x*** € H,.,, for every x € P,. By
Theorem 2 (f) xP" is an admissible word of rank e —p —(n —1), hence
xPP =5y 5,7 where peP" ,a, forpe=i=sp"'-1.Hi=1+t(p-1)+},
0=10=j=p—2then by Theorem 5 s "€ H,.,. Hence to show s;'€ H,,.,,, it
is enough to show e—p—a=ze—-p—tie tZa
(*) Foraz=l “<z:>p"51+t(p—1)+]:>a<e-;—rl§
If @ =0 then ¢ =0 and of course s? € H,.,. Therefore s;' € H,., and conse-
quently x**7 € H,,,, i.e. U..,(P.))= H,.,. The same arguments show that
U._p(P))= H..p. Assume now that e —p —n + 1 <0 and show that U, (P,) =
H, U..(P)=H,, e—p—-n+1<0 :> g+d()-p<0>qg<p-86()=
p—-1> m=p>-2. Hence s, =55y +-smi® by Theorem 5 and
p! ” ao, p™! l a; for i 2 1. From this point on the proof is the same as for the
case e — p —n + 1= 0 but write p" instead of p*™® and p"*' instead of p*~?*".

(b) U(K)= H..,. Hence |K/U(K)|=|H,../H,.,| = p"".

(c) Follows from (b) (see [8, p. 332)).

(d) Let x =s°u, u € P, and! denote ¢ = e —i. By the collection formula

» .
xP = (s) - uf e cy? ~--c‘: <o C, ¢ EK({(s*u)=P.
Now (s*)* € U._n(Pnoy), P €U (P)), for2=t=p -1,

P p
c,(' €U.(P) and c,,P>€UE_1(P,,).



Vol. 36, 1980 GROUPS OF TYPE (m,n) 149

But U._,(P,)=0.(P)) by part (a) of the theorem. Hence it is enough to show
that for t >p

c@ €U.(P).

If p+1=t, p*=t=p*'—1 and l+k(p-1)=t=(k+1)(p—1) then
U._.(P)=0 ... (P,) by the argument in (*), with k instead of ¢ and ¢ instead of
i. Therefore (,,z)
'€V, (P)=U...(P)

and by (*)(*) x* " €U._i(P) - U.ica(Pny) for 1 =i =p.

e If e-i—n=n then U..i-n(Ps-)=1 and by part (d) the theorem
U.-(P)=U...(P). But obviously U._;(P;) = U.-:(P). This proves (e) and the
theorem.

3. The p-degree of commutativity of P

If m = p +2, then [P, P;] = P.,;+1-U (P.s;) by Theorem 0.2. Our aim is here to
strengthen this result.

< 1

DEFINITION. X = §0's5%+++ 50 som is a word of p rank r if p|a for
1si=rIfa=0for 1=i=pu—1but a, =0 denote I(x)=pn.

DEFINITION. P has p-degree of commutativity k if toevery i,js.t.i+j+k =
m-—1,

— . @ a a(ij)
[Si, S,'] = S.‘ﬂj' TSkt si+j+km0d Pi+,-+k+x,

where p Ia.- for0=<i=k—1, but p¥a(i,j) for some i and j.

Denote by I',. (P;) the set of all the words of P: of p-rank p and write I',, for
[, (P.). If P has p-degree of commutativity k, then [s, 5] €T for every i, j.

Tueorem 1. Let P be a p-group of type (m, n) of p-degree of commutativity k,
k<(p™+1)2.

(@ Ifk=ps=2k+1andx,yET,, thenx -y €ET,.

() If xET,, u€Aut(P), |u|=p" and to every i, 1=i=m-1,
[u,s.]€ T« NPy then [x,u] € Tacr.

(C) [} (Fk) = [okere

Proor. Assume we have proved (a)-(c) for words x in I', or I'x resp. with
I(x) =i + 1 and we prove for x with I(x) = i. Suppose we proved the theorem for
words x and y s.t. i =j. If u,v €T, l(u)=1i, I(v)=j and j <i then we claim
that u - v €T,. Since P has p-degree of commutativity k, [s, s;] € I's, hence by
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(b) of the theorem, to every a €', (with u = 5;)[a, 5;] €T... Therefore it follows
from (b), now with a = u, that [u,s;]€ T But then to every a,b€&T,,
[a, b] €T,. Therefore [u, v] €T, and since uv = vu[u, v}, uv €T, by (a) and (b)
of the theorem. Hence it is sufficient to prove the theorem for words x and y in
I, (or Iy resp.) with I(x)=1i, I(y)=j and j =i

(a) ProposiTioN 1. To every x,y € P, with l(x)= i, [x,y] ET..
Proor. Induction on I(x). Assume we have proved Proposition 1 for x with
I(x)>1i and prove for x with I(x)=i x =57 u, u € P,,,. Hence
(*) [x,y]=[siu, y]=[st, yl[st, y, ul[u, y].
We prove [s7, y] €T.. By the collection formula
[s?y]= [Sa,y]“c(z2 e G EK(s,y], 8)

Since [s, y] € Pi.y, I{{s, y])=i +1 and by the induction hypothesis (a) of the
theorem ¢, €T for 2=t = a. Hence by hypothesis (a)

()

;' e ETw
Let y= sf" - st and denote ye = sfif,'- -sem for t = 0. Then
(*)(*) [y, s1=[s7', s )75 - -« [s0, ].

Now, by the collection formula

Bj+t
[s7%, 81 =[50 s-']B'“dg ’ ) " dg,,, where d, € K, ({[s;+4 5], :))-

Since P has p-degree of commutativity k, [s;., 5;]%+ € I, by hypothesis (a) and
since [+, ;] € P, it follows from hypothesis (a) and the induction hypothesis of

Proposition 1 that (ﬁ )
4t
d:*’€rl.

Hence by hypothesis (a) [s7, s;) €T« N P, and again the induction hypothesis
(9 s, Ye«1) € I'v. Therefore hypothesis (a) and (*)(*) yield [y, s;] € '« and this
implies [sf, y] €'« N P;... But then [[s7, y], u] €T.. Hence (*), hypothesis (a)
and the induction hypothesis imply that [x,y]€T.. This proves Proposition 1.

Let x = 5;' - s soms, y =85 shyee s,,. 3, I(x)=1i, I(y)=j and as-
sume that x, y € I',.. To prove (a) first assume y = s}, p , b. (If p + b nothing has
to be proved.)

ProrosiTioN 2. x-s}€T,.
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PROOF. X -5, = §;' -~ s sf—si s,..:,’l‘ s, sar7--seri'. We may assume
thatm ~1—j>j z i Now, s,m7"- s =550 s 1_,,sb] Smce: <m-1-jit
follows from hypothesis (b) and Proposition 1 that [sw77, s;] € I's.: hence
S s o 1‘:;,sb]EF“, by hypothesis (a). This way, using the identity én =
né-[€,n] m —2j—1 times we obtain

m-1

b b
s and s)te--sm €T,

,+l

b * Y+b
xsj:si...sl sl+1...

But then x - s} € I“,L, by definition. This proves Proposition 2.
Let y = s,’ Csom j 2i and assume that y € I',. By Proposition 2

@, L. Bty _ o . L
x.y=(sii.'.sm—ll)(si"'.s'n'll =g, (SI{HI. 'sm—li
and
a, . 5,
seee s sy s s ) ET

If we repeat this process m — 1 —j times we obtain that x -y € I',,. This proves

(a).

(b) Letx =s7g, g€ P..NT, p | a, and assume that x €', u € Aut(P,) and
u satisfies the conditions of (b).

(*) [x,u]=[s?g,u]=[s?,u][s.-,u,g][g,u].
Since P has p-degree of commutativity k and u satisfies the conditions of (b),
[s, u] €T« N P,,.. Hence by the induction hypothesis, to every w € Aut(P,) that
satisfies the conditions of (b), [s;, , w] € ;4. In particular ¢, € I's., and
C£2> c € & T
It remains to show that [s, u}* € I'yuy. [, u] €T N Pi,.. Hence by hypothesis
(©) [s, u]* € Tais1 (p | @) and by (a) and (*)(*) [s7, 4] € Tas1r. Now, g €T, N P,
and since [s;, 5;] € P...NT\ to every s, and s, [g, 5] € P,.. Ty to every s, by
hypothesis (b). But then, [s{, u, g] € 's.1, the induction hypothesis (b). Also, by
the induction hypothesis [u, g] € I's+1, hence [x, u] € Ty by (*) and (a). This
proves (b).

(c) Let x =s7g, g € P, and assume that x €I'.. Then, by the collection
formula
g

xP =(sgy =sg%c; " ¢y, where ¢, € K, ({s7, g)).

Since s7 €T, and g €T N P..,, (b) implies that ¢, € ', for 2=t = p. Hence
c¥?- - ¢, € .y, by (a). Now by the induction hypothesis (¢) u” € [z, and, of
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course, 57 & Iy since 2k +1<p". Therefore by (a) x* € I'sc.i. As every
element of U(['.)is a product x{- x5+ - - x?, x; € T, U(T'x) = Iz vy, as required.

CoROLLARY 1. Under the conditions of Theorem 1, [U(P.), P1] =Tz

Proor. By Theorem 1(a) it is enough to prove that to every x,y € P,,
[x%y] € Taxin.

2k +1 <‘2’)

*) [x% y]=[xy}e:” - - cplc € Ki([x,y], y)))-

By Proposition 1 [x, y] €I's, hence by Theorem 1 (a), (b)

Ci(f)
()

(RN A =3 PR

e r2k +1-
Hence, by Theorem 1 (a)

Since [x, y]” € 'u.y, by Theorem 1(c), (*) and Theorem 1(a) imply [x*?, y] €
F2k+1-

ProrosiTION 3. Let P be a p-group of type (m,n) and assume that P has
p-degree of commutativity k <(p" —1)/2. Let

__ _a a az(l1 ll)
[S,',, sil] = s"lo*'l'ls"x‘*'il*l TStk mod Pil"‘l'l*"“’

[50r 8] = 8205 theper - Sk mOd Pt
(a) If ht+ji=h+) then
[Sir 8] “ [Sir 821 = 8221, -+ Stvre "2 mod Py vjyonn.
®) If iy +j,<ir+], then
a(i,.j)+pr

C
[si5 5] - [Si Sl = 8i0s, -+ Sigrix. mOd P i

a(i a(|2 Iz)

PROOF' (a) [sin S,-I] [siz’ siz] = (S Zo*'ix : '1+;1'*£k) (S ixtjz " °s ‘z+lz+“) mOd Pil+il+k+1'

In the collecting process we use the formula &y = n£[£ n]. Hence it will
suffice to show that

b a, alif)
[Siveivro Sisizen) € Taenr(Pivs) and  [sinen @ lz“‘llz‘*k] € Dok ri(Pyry)-

Since p ’a,, D l b, the first membership follows from Theorem 1(b) and the
second from Corollary 1. This proves (a). (b) is proved similarly.

THEOREM 2. Let P be a p-group of type (m,n) and assume that P has
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p-degree of commutativity k <(p"—1)/2. Let [s,s5]=5s:%" " s?f;’i’kmod P
Then

@) a(ija(i+j+kD)+a@Da(+i+ki)+a(li)a(l+i+kj)=o(p) for
every i, j, Iwith i+j+1+2k <m,

(b) a(i,j)+ a(j,i)=0mod p, for every i and j with i +j +k <m.

() Ifk=p—1then a(i,j)=a(i+1,j)+a(i,j+1)modp for every i, j with
i+j+1+k<m.

d) Ifk=p-2,thena(i+p—-1,j)=a(i,j+p—1)=a(i,j)mod p, for every i
and j which satisfy i+j+p~1+k <m.

PROOF. (&)  [8y 8,80 =[s7% -~ siunaat, 1] = [872 )0« [sThy )% - [, 1]

where U € Piujuist, 00 = Sisjvir1 - Siejrid and p @, for 0= i<k —1. Let us
compute [s:+;., 5]. By the collection formula

[S?:,,-H, Sll = [S,-+,+,, SI]al . dz(z) t da, where di € Ki «si+j+:, sl], sl> = Ki-

Now, by definition, [Sitjsp ] E T (Pvjuet). Hence  [Sivjuns]™ €
U@« (Pitjsir1)) = Takir(Pivjsssr), by Theorem 1(c). Since d; € K;, Theorem 1(b)
implies d; € [T« (Pivjsi+1), Pl] = Txs1(Pisj+ei) and Theorem 1(a) together with the
collection formula implies [s:%;+s, 5] € Tk +1(Pisjsr41)- Obviously, [[si4+0 8], 0:] €
Iak+1(Pivj+ers). Hence by Theorem 1(a)

_ ! @)
(*) [Ss, S;, Sz] = si0+,'+l' e sizd‘-‘i+l+2k[si+i+k, Sl]mOd Pi+i+l+2k+l, 14 , I, for0=t=2k

Next, we compute [saf;i)k, s:]. Denote a = a(i,j). Then, by the collection

formula
().,

oy

[s%ivi 1] = [Sivjvio 81]°d

where d, € K,:= K, ({([Si1j+1, 81, &) for2=v=a.

By Theorem 1(a) and (b) :
df) o+ dy € Taear(Prsporcsr)-

c ali+j+k1)
Now, [Si+j+k, Sl]a = (Si0+,'+k+1‘ ccSivjrie2k u)a, where u € Pi+,-+1+2k+1 and Pl for
O0=t=k — 1. There exists a u' € Pij.ir2c+1 S-t.

_ g €y nali+j+k1)
[si+i+k, S:] = (S.'+,'+k+1' *t Sivjrk+lek+1 " U )si+i+l+2k .

c <, _ .
Denote v = 55441 Si575k+1+k—1 - U'. Then by the collection formula
a
a ai+j+k I a « a(i+j+k 1) o 2
[si+i+k, sl] = (U * S i+j+1+2k ) =V " Sitjrvze €27 0 Cyy

a(i+j+k,j),

where ¢, € Ki:= K, ({0, $;+j1142x ))-
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Since v € Fk+1(Pi+,-+1+k ), ¢ E [Fk+l(Pi+i+l+k), Pi+i+k+l] = F2k+1(Pi+i+l+k), by
Theorem 1(b). As v° € I'v.1(Pisjeisx), by Theorem 1(a), it follows from the
collection formula and Theorem 1(a) that

a(ij) _ b b, _ a(Ljle(i+j+k,l)+pr
[si+j+k, Sl] = sis-i+k+l' < si:—i-li-zk-l+lsi+i+2k+l mod Px+i+2k+l+l
and by (*)
a a, _ a(ij)ali+j+k D+pr
(*)(*) [Si, S 51] = §idert St eako1+1" Sivjrzk+ mod Pijrzx+1+1

where p Ia. for 0=t =2k — 1. We shall use the identity of Witt:
[s. 57, 8] = [[s, 177, s:]”
= [s5 55 s[5, 5]
= [lsy 1. [sn ;1) [s5 55, 8:]"
= [s5 s ][5 :], [sw 511
“[llsy 5.3 5 5,11, L35 56 5211 - ([ 85 1), [0 5:]])-

Now, using the collection formula and Theorem 1 as several times above we get
[[sj, Si], [Sl, S,-]] € rzk+1(R+,~+x) and [[S,, Si, Sl], [51, si]] € r2k+1(Pi+j+l)-

Hence [s, 57, s:)7 =[si, 5, s} mod Tz +1(P.+, ) and (*) (*), with Theorem 1, yields
—a(ij)ali+j+k,D+p-r

-1 s a a a.
1= 0 . 1 . 2k -1 .
[Si, S, sl] = St Sitjrlel Sitj+i+ak—1" Sivj+l+2k mod Pi+j+l+2k+l,

where p I a, for 0 =t =2k — 1. Therefore (a) follows from the identity of Witt.
(b) Follows from the identity [s;, s;1{s;, s:] = 1.

(c) CLam. If x €T (P) then [x,s) ETw.i(P).

Proor. Induction on I(x). Let x = s{u, u € P.,, and assume that x € . (P,).
Then u €, (P)N P, and p Ia.

(*) [x, s]=[s%, s}[s%, 5 u][u, s].
Now, i

[s7,s]= s?+1c£2> o Caw G EKi({8is1,8))= P,
Since p la, $%1E€ I'vsi(P;). By Theorem 1

(5)

cyle Sf;l>61‘k(f’.~+1)§l‘m(}’.-) hence s?+1é£;)---cg"_;l)EFm(R).
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As ¢, €EP.,, and k =p -1, [s7,s] ET..(P:), by Theorem 1. This proves our
claim.

[Si1 8,1 = Sie18ter = siafs [5, 5,], s574]
= si_ll([si, S,'_+11]5i+1[si+1, s,'_+11])[s"s’] . [ss, S;, S,'—+11] [Si, S, S]:;l‘-

Denote v = s, $;11]Si+1[Si+1,5;4]. Then v €& P, Since [s,5]€ T (Py;),
[D, [si, s,']] € r2k+1(P.'+,-) and [Si, Sjs S,+1] € I‘2k+1(P.+,) [S., ,+1, sn+1] € r2k+1(R+1) by
Theorem 1(b). Hence

[8i+1, 51 =[5 s7:} [Si+1, S7o1) [86 85 ] mOd o ci(Pisy).
Taksi(Pisj) = Ti (Pivjv2) and [si,4, $701] € Ti (Pisivz). Hence
[5i1, §1=[55 5751155 55, s mOd Ty (Pis;+2)
and a(i+1,j)=—a(i,j + 1)+ a(i,j)+ kp mod p", by our last Claim, Proposi-
tion 3 and Theorem 1(a). Therefore a(i,j)=a(i,j +1)+ a(i +1,j)mod p, as

required.
(d) For j=1, |
()
sl jap-17 " Siket Skt u =1,

1

where u € P, ,» - Z(P)and p" ™ I a forp..=t=p*'andp" I a fort=p*,
by Theorem 2.4. Hence, to every i =1,
()
n\p a,
EXEITEE Sitpn-1ru]=1.
Let v E P,-+2(p_1)+1. Then
(%)

[s, 87 -5l 57562 0] =[5, 87 177 [s, 5 1+P-1] e [5 Spap-n) 7 [ 0)
where o, = s:lz(,,_.) - v. We show that for t = 1, [s, s,-i;,‘:,’H]”P“e P;.j.pi For this
it is enough to show [s;, s;'l,;f:'1+,] € P.j.p+x. We may assume that ¢ = 1 since the
calculations are the same for ¢ = 1. It follows from the collection formula that

%)
@[553 =[5 54517t -+ - co, where p"'|a, ¢ € Kii= K. ({5, [5, 54 ]))-

. .. @j+p)
Since P has p-degree of commutativity k, [s, $+p] = $t%4p - - Starirei” 01 Where

V1€ Piijipinsr and p ,c, for 0 =¢=k — 1. Hence, by the collection formula

ap
a(i,j+pla_ a
(H) [‘si’ si+P] = s'*‘I:‘l” o si+:“+:ikpvlp' d AR d“p? du € Ku (Pi+i+p)-

Since p"lp,-a, for 0=t=k-1, as plp. and p"‘lla,,, it follows from
Theorem 2.4 that $0ifp+c€ Pirjuzp-1= Pujuipsrs, a8 k <p—1. Obviously
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s"f,ki;i):" v,€ P,jip. Hence d, €K, (P.;.,) implies that for u =2,
d. € P,.;.p+«. Therefore

(HI) [S.—, sl+p]a" € P“'i*P*k'

By similar calculations it is easy to show that for 2=¢t=p—1

C{’ ) € Pi+i+p+k'
But for t=p obviously ¢ € P.,;.p«. Hence (I), (II) and (III) imply that
[s:5,%,] € P.vjipsr. This means:

(Iv) [s, 8] 800 1=[s, 5717 - [5, s7550 i) "mod P, vpur.

Now, " i
[su s:"‘] = [S.', si]p". 0(22)- v cgp). o,

by the collection formula, where ¢, € Ki:= K, ({[s;, [$» §]]) = Pivjric-ny = Pj1a.

Again, by the collection formula

P"_ Iy 4 by %) L
[Sia si] = (si+j' Sitp+1°° " Sivjrk—1" Si+i+ku)

_ i ali,))b
= Sivje2-1)° " " Sivj+2p-1)4e" " Sivjrk+p-1°D

where p"“”,, p | L, u € Piyjirs, ©E Piyjursp and

= _(p )E —p" 'modp".

p
. . P aGidb
Since by assumption k<p-1, [s,5] = s,+,ik+,, ymod Peyjisp, Also, as

¢, € P.,; a similar calculation shows that

(). (7)
e cpp—l_1 e R+i+k+p-

C2

Since ¢, = 5.°* " * §, %S wazir1 * Uy fOT 2 certain p = j + ip and u, € P, 5., where
p Ie, for 0<t=2k (by Theorem 1(b)), ¢5"'E€ Py.jyip-1., where v=
min{2k +1,p — 1}. But i+j+(p—l)+v§i+]+p+k (k <p-1). Hence
¢} € Piijupui and

pn 1 al, n— n
V) [50 8] 17" =5ieiresp-1mod Pryjrper,  where b =p"'modp".
By a similar argument

VD [ss €+p>l = 5Sieynept ' mod Pyojipei,  Where by = (1; ) =p"'modp".

Therefore (IV), (V) and (VI) imply that (a(i,j +p—1)— a(i,jp"'=o(p"),
e, a(i,j+p—1)=a(i,j)modp. This proves Theorem 2.
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The following theorem is the main result of this section:

THEOREM 3. Let P be a p-group of type (m, n). Assume that P has p-degree of
commutativity k. If m >3p —6+ 2k then k 2 p — 1.

ProOF. Assume k = p — 2. Then the a(i, j)’s defined in Theorem 2 satisfy the
conditions of Shepherd’s Theorem [12] (see also [7]). Hence m <3p -6+ 2k,
contradicting m >3p — 6 + 2k.

CorOLLARY. If m =z5p—10 then k Zp — 1.
By the aid of Theorem 3 we may find the exponent of P, for m = 5p — 10.

THEOREM 4. Let P be a p-group of type (m,n) and assume that P has
p-degree of commutativity k2p—1. Let m—1=q(p-1)+r, 1=Sr=p-1,
exp(P)=p° and let x=5s,"-s5* - s, mod P.., be an element of P, where
0= <p for 1=i=r

@ Ifpla.for 1Si=rthenx”'=1.

(b) If p ¥ a: for at least one i, 1=i=r and i, is the first such i, then
X = S iy ST, where ™| g, for 0<j=r—i-1.

(c) Foriz1, exp(P)=]s].

d) Q...(P)Z P, -O(P)), p=|PQ._(P)|=p" " and P/Q._(P) is regular.

Proor. Let us prove (a), (b) and (¢) by induction on cl(P). If cl(P)=2
everything is trivial. Assume (a), (b) and (c) hold for P with cl(P) = j and prove
(a), (b), and (c) for P with cI(P)=j + 1. By Lemma 0.1 we may assume that (a),
(b) and (c) hold for H;, = (P, s), i =2 and prove them for P. Denote x = sju
where u =s5>---5,'mod P,,,.

c—1

CLamM. x”7'=5s% -u®

)0

PrROOF. (siuy '=s5""c3” " ¢

e~1

* ¢pe-1, by the collection formula,

where ¢; € K;((s§, u)) = P,.,. Hence, if | 5;..| = p* then ¢?" = 1 by hypothesis (c).

fr+k-Dp-1)=i+2<r+k(p—1)then |s.:|=p°* by Theorem 2.6.
Hence, exp(P..2)= p°™* by hypothesis (c) and ¢?"* = 1. Denote

oy

If p=i<p®'then u;—1Ze—-1-a. Now, for a =2

>i+2—r>p"‘+3—p>p°‘—1_

k p—-1 = p-1 p-1

1za
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hence u; ~1Z e —-1-a = e — k. Therefore

c,(pt‘-l) =1 forp’=i

Assume « =1. Since P has p-degree of commutativity k=Zp—1, ¢ =
sfi’z- .. a?i’;’modP,-ﬂ,H, where p ,a; forO=sj=p-2. Asforiz2, ¢,€P,
) |
¢ '’/=1 for2=i=p-1
by the induction hypothesis (c). Hence assume a = 1. For p =, ¢; € P,,,, hence
by hypothesis (c) and Theorem 2.6, ¢?*“=1 for p =i < p> This proves our
Claim.

(a) By hypothesis (c) u*'=1 and by Theorem 2.6, s{ " =1. Hence (a)
follows from our last Claim.

(b) If i;=2 then u" = Sw i1t a:::"lo by the induction hypothesis. Since
p ,a, si"'=1 and (b) follows from the last Claim. If i, =1 then

X0 = ()T T = (s ST (St ST
by Theorem 2.5 and the hypothesis, where p"™! | a, b for0=j=r-1,0=sl=
r—2. Since P,._, is regular for r =p —1, by Theorem 2.7 x* '=s2_,---s5™
where p""lc, for0sj=r-1.

(c) For i =2(c)is just the induction hypothesis. For i = 1 (c) follows from (a)
and (b).

(d) By (c), exp P, =|s,|. Hence, by Theorem 2.6, G, = Q._,(P,). This implies
that P,/Q._,(P,) = P, is generated at most by the p — 1 elements §,, &, - - -, §,_..
On the other hand Q(P,)=Q. (P,), hence P, -(P;)=Q._(P;) and every
element x =s7's3> - s;7'mod P, s.t. p | a, for 1 =1 = p — 1 belongs to Q._,(Py).
Therefore p =|P,/Q._(P))|=p”'. Finally P=P/Q,. (P,)=(35)-P, Since
[5°, P]= P, -Q(P)) and (57)= Z(P/Q._(P.)), P has class=p — 1. Hence P is
regular.

CorOLLARY. Let P be a p-group of type (m, n) and assume that m = 5p — 10.
Then (a), (b), (c) and (d) hold for P.

Proor. Follows from the corollary to Theorem 2.

PART B

4. p-local subgroups of finite groups with a Sylow p- subgroup of type (m, n)

For n =1 the results appear in [10]. Hence we deal here only with the cases
n = 2. The main result is:
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THEOREM 1. Let G be a finite group with a Sylow p-subgroup P of type (m, n),
nz2pz3 mz(n+5)(p-1)+1. For H= G denote H = HO,(G)/O,(G). If
O,(G) is not cyclic and P # 1 then P A G and G = P - T is a semidirect product
of P and T, where T is cyclic of order 7,7 ,p -1

Briefly, the proof is this. Let G be a minimal counterexample. Then
0,(G)=1and Cs(0,(G)) = C+(0,(G)) = O,(G). Also N (P)/O”(Ng (P))=
G/O*(G). Hence if we find a normal subgroup N of G in O,(G) s.t.
|O,(G)/N| = p then either O,(G)/N is noncentral in G/N, in which case G is
not a minimal counterexample, or O,(G)/N is central in G/N. Since
Ng(P)/O?(Ng(P))= G/O?(G) in this case G has a normal p-complement,
again a contradiction to the minimality of G. In Propositions 1-3 we locate
0,(G) in P and construct a normal subgroup Ny A G in O,(G)s.t. O,(G)/N,is
elementary abelian of order = p®*'. Proposition 4 shows that Cs(0,(G))=
C»(0,(G)) and in Proposition 5 we construct N A G with |O,(G)/N|=p.

ProposiTioN 1. Let H be an elementary abelian normal subgroup of P and
assume that exp(P,)=e =Z2n + 1. Then:

(@) f H=P,_, then |H|=p".

() |H|=p” and if H=P, then |H|=p*"™".

(c) fH=U..(P)and e =e—iZn then |H|=p'®™".

(d) If |H|=p*® d=p° then U.(P)= Ce(H) and P,- = G (H).

Proor. (a) Since P._,/P; is cyclic, |[HNP_,/HNP,|=|(HNP_)P/P|=
p>|H|=p"

(b) Assume H = P,. Then by Proposition 0.2(b) we may assume that H Z P,.

If x €P, then we may write it uniquely by x =II'}s?, 0= a, <p" If
a=q-p,(qp)=1, denote v,(a) =t Assume that X = {x,," -, x4} is a set of

1 e ()

generators of H and x; =II"7's,” . If x4, -, x, r =d, are all the generators
of H in X s.t. a?# 0 and a$’ = min; v, (a{’), then there exist numbers a,, - -, a,
St X1, X2X7%, 0+, X XT% X,e1,* * *, Xa} 18 @ set Of generators of H and x; - x7*€ P,

for 2=<1i = r. If we continue this way we obtain a set of generators {y,, - - -, ya} of
H oy, =1s" with a®=0 for i <j and v, (@)= v,(e) for i >j. f xEH
and x =1"5 ‘s where a;#0, 0=a,., <p" and 0=t=m —i—1, then
v,(a,)=n -1, otherwise x?#1mod P..;. Hence v,(a)=n—1 to every i
1=i=d in the set of generators {y,, - - -, ya} we have constructed above. Denote
t, = [y, (i = 1)s]. Then

)0
(22 g et =1 mod Py
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But f,- = s+ 'u, where u € P,~,,. Hence s,- =1 and H is generated by p” — 1
elements. Finally if H < P then since P/P, is cyclic, |H| = p*".
(c) by Theorem 2.5,

st = I1 s, where po=m—i—1=t(p—1).
B =0
Hence if t=1 then U, -1+ (P1) = Prosp-n- If x =s°u, u € P,, then by the
collection formula ( )
4

xP =(s*Yu"---¢; " ---cp, wherec,€P,.

Now, s* €P,_, and u>”" €U,.(Py). If p°=i<p* and 1+k(p-1)=Si=
(k + 1)(p — 1) then
pg_al (11) '

Since k = q,
(p‘)
Ci ! (S Ue—k (P1+k(p-1)) = Pm—i(p—l),

by Theorem 2.5. (Consider the subgroup (Piixp-1,5).) As u?" €U, (P)=
P, _ip-1, hence U.,(P)=P,_ip-1 But then H=P,_,,_1 Therefore |H|=
p'®™", by (a).

(d) We may embed P/C,(H) in GL(d,p). Hence U.(P)= Cy(H) and
P« = Cp(H) by theorems 16.3 and 16.5 respectively in [8, p. 382].

ProposiTION 2. Let AAP, A# P, exp(A)=p°. Let H=U,...(A), Hch A
and assume that Cp(K) = A for every noncyclic characteristic subgroup K # 1 of
A. If H is elementary abelian, |H|> p, and exp(P,)Z p**** then

(a) H is elementary abelian of order = p*~'. In particular | Z(V.-(A)))|=
pr.

(b) U(P)=A, P, =A

(C) Ue—](Pl) = Q(Ue—z(A )) = Ue—z(Pl).

(d) Un—l(Pm—p-H) = Q(Ue—z(P1)) = Q(Ue—a(A))-

() If m=z(n+5)(p—1) then A = P,- B(P).

Proor. H =P, H is elementary abelian. If |H|=<p? andd <p° thena =n
by Proposition 1(b). Hence {J.(P)= A = P by Proposition 1(d) and

(O) Uc—l(P)—s- Uc—l—a (A)éuz—l—a (P)-
Since H=U...(A) obviousy H=U..,-.(A)=U..-.(P) and H=
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U..1-.(P). Since e=2n+3, a=n and e—a +1=n, by Proposition 1{c)
d=(a+1)(p—-1). Now, if d>p°' then p*'—-1<d=(a+1)(p-1), ie.,
pe'=1<(a+1)(p—1). But for a =3, p*—1=Z(a +1)(p —1). Hence a =2
and by (0)

M U.-.(P)=U.5(A)=0U.5(P).

Since e =2n +3, U,._5(P)=U,_5(P,;), by Theorem 3.4, and U._;(P) is regular.
MoreOVer ,Q(Ue_3(P))l = lQ(U¢_3(P1))’ = IU e—~3(P1)/U¢‘2(P1)l = pp—l. Hence

@) 1T o(P))| = p*".
On the other hand since U._,(P,) is regular, (1) implies that
1<U.(P)= U (A)) S UV (P)) = AT (P).
But Q(U._(A))=U.-s(A)). Consequently
H=QU..(A)=NU.5(A))=UU.5(P)).

Therefore |H|=|Q(U.-5(P))| and by (2), |H|=p*~', as required.

(b) By (a) a« = 1. Hence (b) follows from Proposition 1(d).

(c) Since a =1 by (a), (c) follows from equation (0).

(d) Since U(P)=A by (b), U.(P)=0U.5(A)=0U.4P). Hence
QUP)=UU.AN=QUU.5(P)). But as pz=3 WNU..(P))=
QU ._5(P,)). Therefore QU .(P)= YU U.-5(A)) and since Yn-1o(Pn-p+1)=
QU .oP))), MUV .-5(A)) = U_s(Pn_,+1). Note that this means that G .—s(Pr—p+1)
is characteristic in A.

(¢) Let K =U,-1(Pn_p+1)- Then Kch A by (d), K is elementary abelian of
order p?' and hence Cp(K)=A. On the other hand since K =
(B pisy o, 80, 5, € Cp(K)= A for 1 =i = p — 1, by Theorem 3.3. In particu-
lar 5,€ A and since A AP, P,= A. Since U(P)= A by (b) obviously s* € A.
Hence P,-(s")= P, - ®(P)= A. But P,- ®(P) is a maximal subgroup of P and
A# P. Hence A = P,- ®&(P).

ProposITION 3. Let P be a p-group of type (m,n), A = P,-®(P) and assume
that exp(P,)=e =2n + 1. Then

(@) To every u € P, and to every a =1, (s* -u)’" =" u""". Hence
(" -uy " =ur

(b) If u € P, and |u|=p° then |s*" -u|=p° for every a = 1.

() IfueP,and u>"' =1 then (s""uy "' =1 for every a = 1.

(d) Qu_i(A)=Qu_i(P,)- (s").
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(e) A/®(A) is (elementary abelian) of order at most p**'.

@ If t€Ns(P) and s'=s"modP, where a€Z, then (s")=
(s?)* mod P(A).

(6) [Q.-(A)- D(A)/P(A)| = p*.

. )LL)
ProoOF. (@) (s* - u)y  =sP""'u" ¢y oo p ' Ao by the collection

formula, where ¢, € K, ((s"",u?é P,. We show that
pz—l °
c,')=1 for t = 2.

4 I
[s7*, 8] = sPi dz(z) ceeddt/ o dy,, where d, € K. ((s, $i41)) = P,

by the collection formula. Hence [s*°, s;] € I',_i(P;.1). Since ¢, is a product of
commutators of [s*°,s;] with x;, where x; €{s”", s}, ¢, €ET,_«(P.), by Theorem
31. f1+k(p-1)=t=(k +1)(p—1) and ¢, €ET,_,(P.) then by Theorem 3.4,
=1 1f p*=t<p** then

ciea e—1
P l (pt ) '
Now, by the computation in Theorem 3.4, ¢ —1—a = e —1-k. Hence
e\
c,(p‘ )=1
and since e Z2n +1, (s™u)" =u"".

(b) and (c) are consequences of (a).

(d) Let x = s”"u, where u € Pyand a = 1. By (a) x*" ' =1¢ u”"' = 1. Hence
C={x€A lx""' =1}={x€A lx = sP"u,u” =1} is a set of generators for
Q..(A). Q. _(P)={ucP,|u”"'=1} by Theorem 3.4. Hence C=
Qz—l(Pl) (sP)= Qe—l(A )

(e) Since ®(P;)=P(A), to compute A /P(A) we may assume P(P,) = 1. Now,
[s%, 5. ] € A'=P(A). On the other hand [s?, s,] = s,. by the collection formula
(®(P,) = 1) hence [s*, s;]) = 5,. . mod D(A), i.e., S,.; E P(A). Since ®(A) A P and
P(P)= A, A/P(A)=(5, 5, ", 5,) v:here £E=x-®(A) for x EP.

() (s°s2* - sum) =s%-- 50 e} ¢, where ¢, E K, ((s* 52+, s ) =
Pi... Hence

() ()
N €@y Pivy) and ¢ -+ ¢, ET,(Ps).
In particular l
14

ey’ ---c,Esf’---s:"modP,,ﬂ, where p IB, for3=t=p.

Therefore by (e) and Theorem 3.1, (s“s3*- - - s.on3f =s" mod B(A).
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(g) s:& Q._,(A) - P(A), by (c) and (e). Therefore (g) is a consequence of (c).
We now begin the proof of Theorem 1. Assume that G is a minimal
counterexample. Then O,(G)=1.

ProposiTION 4. Let N AP agnd. assume that N is not cyclic. Then C =
Cs(N)= 0,(C)- Cp(N).

Proor. If N AXG then by the minimality hypothesis K = Ng(N)=
O,(K)-P-T, where T-0,(K)/O,(K) is cyclic of order T,'rlp—l. Hence
C=Cs(N)=0,(C)-C,(N). Sa assume NAG. If K=Cs(N)-P# G then
N.(P)=P-Cx(P) and K = O,(K)' P, [0,(K),N]=O,(K)NN =1, hence
0,(K)= 0,(Cs(N)), which proves the proposition. Assume therefore G =
Cs(N)-P and Ng(P)= P - Cs(P) (since N is not cyclic, Theorem 0.2 implies
that 7 =1; hence Ng(P)=P-Cs(P)) and prove that G has a normal p-
complement.  Since L/O,(G)=K.(P/O,(G)AG/O,(G), Ns(L)=
O,(Ns(L)):P and G/O,(G) has a normal p-complement Q,/O,(G), by
theorem 12.10 in [3, p. 37], where Q,N P = O,(G). If O,(G) = ®(P), then by
Tate’s theorem [8, p. 431] Q; has a normal p-complement, hence G has a normal
p-complement. Therefore O,(G)Z ®(P). If s, & O,(G) then there exists an
x € P\P,®(P)s.t. x € O,(G). Since O,(G)AP, P,= 0,(G) and Z,(O,(G)) =
Z,(P)=P,_; for 1=i=m -3, by Proposition 0.2(c). Therefore P, AG for
3=i=m -1 and in particular P; A G. P/P; is of class 2, hence P/P; is regular.
Consequently G/P; has a normal p-complement Q.,/P;, QNP = P; by
Wielandt’s transfer theorem. But then by Tate’s theorem Q; has a normal
p-complement and hence G has. Therefore s, € O,(G). Since O,(G)AP
obviously P,=0,(G) and Q._(P)=9Q..{(0,(G)). This implies that
P/Q._(0,(G)) is regular by Theorem 3.4, hence by Wielandt’s transfer theorem
for P = P/Q._,(0,(G)), P has a normal p-complement Q/Q._; and

Q) QNP =Q.,(0,(G)).

If P = O,(G)then G = Ng(P)= P - Cs(P) and G has a normal p-complement.
Hence we may assume that O,(G)# P. Now, P, = O,(G)= P,- ®(P), hence
Q.(0,(G)=Q.(P,-P(P)) and by Proposition 3(d), Q._(0,(G))=
Q._(Py) - (s*). By Theorem 3.4(d), Q._.(P:){(s”)= ®(P). Hence

2 Q.-(0,(G))=2(P).

(1) and (2) imply that Q N P = ®(P). Hence Q has a normal p-complement by
the theorem of Tate. But then G has a normal p-complement, as required.
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CoroLLARY 1. If N is a noncyclic normal p-subgroup of G then Cp(N)=
Cs(N).

Proor. By Proposition 4, C = Cs(N)= 0,(G)- Ce(N); O,(G)chCAG
> O,(C)AG. Hence O,(G)=1 and C = Cp(N).

CoroLLARY 2. O,(G)= P,-®(P).

Proor. If A = O,(G) has no characteristic cyclic subgroup (c.c.s.) K#1
then we are done by Proposition 2(e). Hence let K be a c.c.s. of A. Then
K = Z(P):=Z. Hence we may assume that K is the maximal c.c.s. of A and
K=Z(G). If A/K has a ccs. then s, .=s,,modZ and s,_;=S5._ by
Theorem 0.3(c). Therefore t=1 and G has a normal p-complement. So
A/K has no c.c.s. Let exp(A/Z)=¢ and UZ(U...(A/K)))= H/K. Then
H =HZ/Z ch A. If H is cyclic then H = P,,_, and as H is not cyclic, C, (H) = A.
But then ®(P)- P, = C,(Q(H)) and A = ®(P)- P,. Consequently, H is a noncyc-
lic elementary abelian subgroup of U..,(A). Therefore by Proposition 2,
A =®(P)-P,/Z and A = ®(P)- P,, as required.

ProPOSITION 5. Let A=0,(G) and to every X=G denote X =
X®P(A)/P(A). Then (5°)AG.

Proor. Let M =Q, (A), K = F,. M is a KG-module which has dimension
at most p over K, by Proposition 3(g). Also by Propositions 3(d) and 3(f) M
decomposes, as a KN-module:

1) Mx = U P U, where U, = (§7), U,= Q._(P)).

M is not a projective KG module, since then U, and U, have to be, which is
clearly impossible as dimk (U;) < p for i = 1,2. Therefore U, and U, have vertex
P and if M is an indecomposable KG module, then M also has vertex P (see
[5]). But by Green’s transfer theorem in [6] there exists a unique (up to
isomorphism) indecomposable KN module U s.t. U'Mx,q (i.e. U is-isomorphic
to a direct summand of Mkx) and U has vertex P. Consequently M is not
indecomposable. By (1) if M = M, @ M, and U, , M« then again by Green’s
transfer theorem U,= Mixx and (5¢) is a G-invariant subspace of P ie.,
(" AG.

PrOOF OF THEOREM 1. Assume first that 7 = 1. Then Ng(P)= P - Cs(P), by
Theorem 0.2; Q._(O,(G)) = ®(P), by Theorem 3.4 and Proposition 3(d). Since
P, = 0,(G), P/Q._(0O,(G)) is regular. Hence by Wielandt’s transfer theorem
for P/Q..1(0,(G)) and Tate’s theorem G has a normal p-complement. (We
have stated these arguments in detail in Proposition 4.) Therefore assume that
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1L If s'=s5"modP,, a €Z then a# 1. Since (s°) =(s")* mod ®(A) by
Proposition 3(f) (s*)Z Z(G). Hence C:=Cs(°)AG and 1<|G:C|=
|G : C|=p —1.But then, since the theorem is true for C by assumption, C has a
normal p-complement and hence G is not a counterexample. This proves
Theorem 1.

The following theorems are consequences of Theorem 1.

THEOREM 2. Let G be a finite group with a Sylow p-subgroup P of type (m, n),
p>2. Assumethatm 2(n+5)(p—-1)+1. Ifx,y €E Pandy = x® for g € G then
there exists an element n € Ng(P) s.t. y = x".

Proor. By induction on |G : P| = v. For v = 1, obvious. Assume v =2 and
G is a minimal counterexample.

ProrosiTioN 1. (a) f N=P, NAG then N = Z(P).
(b) Assume that N AP, N A G and N is not cyclic. If x,y € P and there exists
h € NG(N) s.t. y = x" then there exists a u € Ng(P) s.t. y = x*

ProoF. (a) Assume that NZ Z(P). Then N is not cyclic hence by Theorem 1,
G = QPT, (|Q|,p)=1,|TQ/Q||p—1.1f x,y € P, y = x* for a certain g € G
then y = x® mod Q. Since G/Q = PT, x* =x"“ mod Q for a certain u € PT and
x¥!=x"-q, where € Q. Sog=x*-(x“)"'=yx™“&EP, hence qgEQNP=1,
i.e. x® =x" contradicting our assumption on G. Therefore N is cyclic and
N = Z(P).

(b) By Theorem 1, No(N)= Q - P - T. Hence by the above argument, but
now with Ng(N) in place of G, if x,y € P, g € Ng(N) then there exists a
u€E Ng(P)st.y=x"

Prorosimion 2. If Z = Z(P) and Z is weakly closed in P w.r. to G then
Z=Z(G).

ProoF. Since Z is weakly closed in P w.r. to G:

(1) two elements x, y € P are conjugate in G iff they are conjugate in Ng(Z).

Now Z ch (P) (Z(P) is cyclic) hence Ng (P)= Ns(Z). If Ng(P)# G then by
the assumption on G:

(2) two elements x,y € P are conjugate in Ng(Z) iff they are conjugate in
NG (P).

Hence if N (P) # G, we are done by (1) and (2). So assume that N (Z)= G.
If Z£ Z(G) then Cs(Z)AG, |G:Cs(Z)||p—1 and again by the induction
hypothesis on G, two elements in P are conjugate in Cs(Z) iff they are
conjugate in N (P)N Cs(Z). Since G = Cs(Z)T, T = Ns(P), if x and y are
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elements of P then x and y are conjugate in G iff they are conjugate in Ng (P),
contradicting our assumption on G (i.e. G is not a counterexample). Therefore
Z = Z(G).

Proor oF THE THEOREM. Denote by J = J(P) the Thompson subgroup of P.
By Proposition 1(a) and Theorem 1, Ns(J)= QPT, (|Q|,p)=1 and Q=
Cs (J). Therefore Q;(Z(P)) ANg(J)toevery 1 =i = n —1 and by theorem 14.5
in [3, p. 42] .(Z)) is weakly closed in P w.r. to G for 1=i =n—1. Hence
Q.(Z)= Z(G) by Proposition 2 and in particular s;,_; = s, for every t € T(=
N (P)). This implies that Z(P) = Z(Ng(J)). But then by Theorem 14.10 in [3, p.
45]

(3) Z(P):= Z is weakly closed in P w.r. to G.

Consequently, by Proposition 2,

@) Zz=2Z(P)=Z(G).

Now, denote X = XZ/Z for X =G. Let J,/Z = ](13). J; A P and by Theorem
1 and Proposition 1, Ng(J.)= Q,PT. Hence Ng(J,))=O,PT (|Qi],p)=1
and U,(Z«P))-Z/Z ANg(J)). Therefore by theorem 14.5 in [3, p. 42]
U.(ZAP))Z/Z is weakly closed in P/Z w.r. to G/Z. Since Z(P) is weakly closed
in P by (3) and U,(Z,(P))Z/Z is weakly closed in P/Z Q,(Z,P))-Z = H, is
weakly closed in P. Moreover, since Hy/Z and Z are strongly closed in P/Z and
P w.r. to G/Z and G respectively, H, is strongly closed in P w.r. to G. (Note
that H,/Z and Z are cyclic.) Now H, is an abelian subgroup of P which is
strongly closed in P w.r. to G. Hence by theorem 6.1 in Glauberman {2], if x and
y are elements of P and y = x* for a g € G then they are conjugate in Ng (Ho).
But H, is not cyclic. Hence by Proposition 1, if x, y € P are conjugate in Ng (H,),
they are conjugate in Ng (P). Consequently, if x, y € P are conjugate in G, they
are already conjugate in Ng (P), contradiction. Hence there is no counterexam-
ple to Theorem 2.

The following two theorems are trivial consequences of Theorems 1 and 2.

TueorReM 3. Let G be a finite group, P a Sylow p subgroup as in Theorem 2.
Denote N = Ng (P). Then G/O®(G)= N/O?(N).

Proor. By Theorem 1, N=QPT (|Q|,p)=1 and Q = C;(P). Hence
N’=[QPT, QPT] = Q,P'[P,T], Qo= Q and
N PNN'=P[P,T)
By theorem 3.4 in [4, p. 250]
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PNG'=(x"'y|y=x%x,yEPgEG)
={(x"ly ]y=x“,x,yEP,u€N)
={[x,u]|x € P,u€ N)=[P,N] =[P, QPT)= P[P, T)].
@) PNG'=P[P,T)

(1) and (2) imply that PN G’= P N N’, hence by Tate’s theorem G/O°(G)=
N/O*(N).

Remark. If P is a p-group of type (m,n) and m = p +2 then P may have
many sections isomorphic to Z, wrZ, and may have homomorphic images of this
type. Hence Theorem 3 cannot be derived from known theorems (such as
Wielandt’s [12] or Yoshida’s [13]).

The following theorem describes the structure of p-local subgroups of G.

THEOREM 4. Let G and P be as in Theorem 1. f H=D = P and H A P but
H#Z Z(P) then N = Ng(D) = QBT, where Q = O,(N), QB =0, ,(N),Bisa
Sylow p-subgroup of N and T, = T.

Proor. HAP H=D = HAD.By Theorems 1 and 2, H is weakly closed
in P w.r. to G (in fact H is strongly closed in P), hence is weakly closed in B w.r.
to N. Therefore H® = H for every g €N, i.e., H AN. But then N = Ng(H)=
QoPT and N has the required form.
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